Abstract
Diffusion MRI (dMRI) is highly sensitive in detecting early cerebral ischemic changes in acute stroke, and in pre-clinical assessment of white matter (WM) anatomy using tractography, thus being an important component of health informatics. In clinical settings, the computation time is critical, and so finding forms of reducing the processing time in high computation processes such as Diffusion Spectrum Imaging (DSI) dMRI data processing is extremely relevant. We analyse here a method for reducing the computation of the dMRI-based axonal orientation distribution function h by using a Monte Carlo sampling-based methods for voxel selection, and so obtained a reduction in required data sampling of about 20 %. In this work we show that the convergence to the correct value in this type of dMRI data-processing is linear and not exponential, implying that the Monte Carlo approach in this type of dMRI data processing improves its speed, but further improvements are needed.
Keywords
- White matter
- Diffusion MRI
- Monte Carlo sampling methods
- Optimization
- Axonal ODF
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96: 10422–10427. (1999).
Lori, N.F., Akbudak, E., Shimony, J.S., Cull, T.S., Snyder, A.Z., et al. Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed 15: 494―515. (2002).
Tuch, D.S. Q-ball imaging. Magn Reson Med 52: 1358– 1372. (2004).
Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34: 144–155. (2007).
Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41: 1267–1277. (2008).
Raffelt, D., Tournier, J.D., Rose, S., Ridgway G.R., Henderson, R., et al. Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59: 3976–3994. (2012).
Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi. F., et al. The geometric structure of the brain fiber pathways. Science 335: 1628–1634. (2012).
Dani, A., Huang, B., Bergan, J., Dulac, C., Zhuang, X. Superresolution Imaging of Chemical Synapses in the Brain. Neuron 68: 843–856. (2010).
Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489: 391–399. (2012).
Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J. DMRI of Complex Neural Architecture. Neuron 40: 885–895. (2003).
Hill, S.L., Wang, Y., Riachi, I., Schürmann, F., Markram, H. Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc Natl Acad Sci U S A 109: E2885–94. (2012).
Wang, R., Benner, T., Sorensen, A.G., Wedeen, V.J. Diffusion Toolkit: A Software Package for Diffusion Imaging Data Processing and Tractography. Proc Intl Soc Mag Reson Med 15: 3720. (2007).
Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J. AxCaliber: A method for measuring axon diameter distribution from dMRI. Magn Reson Med 59: 1347–1354. (2008).
Milne, M.L., Conradi, M.S. Multi-exponential signal decay from diffusion in a single compartment. J Magn Reson 197: 87– 90. (2009).
U.C.L.A. (n.d.) LONI Image Data Archive (IDA). Available: https://ida.loni.ucla.edu/login.jsp. Accessed 16 November 2012. (2012)
Zhang, Y., Brady, M., Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20: 45–57. (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Lori, N.F. et al. (2016). Reducing Computation Time by Monte Carlo Method: An Application in Determining Axonal Orientation Distribution Function. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Mendonça Teixeira, M. (eds) New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-319-31307-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-31307-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31306-1
Online ISBN: 978-3-319-31307-8
eBook Packages: EngineeringEngineering (R0)