Skip to main content

The New Systematics of Scleractinia: Integrating Molecular and Morphological Evidence

Abstract

The taxonomy of scleractinian corals has traditionally been established based on morphology at the “macro” scale since the time of Carl Linnaeus. Taxa described using macromorphology are useful for classifying the myriad of growth forms, yet new molecular and small-scale morphological data have challenged the natural historicity of many familiar groups, motivating multiple revisions at every taxonomic level. In this synthesis of scleractinian phylogenetics and systematics, we present the most current state of affairs in the field covering both zooxanthellate and azooxanthellate taxa, focusing on the progress of our phylogenetic understanding of this ecologically-significant clade, which today is supported by rich sets of molecular and morphological data. It is worth noting that when DNA sequence data was first used to investigate coral evolution in the 1990s, there was no concerted effort to use phylogenetic information to delineate problematic taxa. In the last decade, however, the incompatibility of coral taxonomy with their evolutionary history has become much clearer, as molecular analyses for corals have been improved upon technically and expanded to all major scleractinian clades, shallow and deep. We describe these methodological developments and summarise new taxonomic revisions based on robust inferences of the coral tree of life. Despite these efforts, there are still unresolved sections of the scleractinian phylogeny, resulting in uncertain taxonomy for several taxa. We highlight these and propose a way forward for the taxonomy of corals.

Keywords

  • Azooxanthellate
  • Cnidaria
  • Coral
  • Integrative taxonomy
  • Phylogenetics
  • Reef
  • Species boundaries
  • Zooxanthellae

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-31305-4_4
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-31305-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 4.1

References

  • Addamo AM, Reimer JD, Taviani M et al (2012) Desmophyllum dianthus (Esper, 1794) in the scleractinian phylogeny and its intraspecific diversity. PLoS One 7:e50215. doi:10.1371/journal.pone.0050215

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Addamo AM, García-Jiménez R, Taviani M, Machordom A (2015) Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus by 454 sequencing and cross-species amplifications in Scleractinia order. J Hered 106:322–330. doi:10.1093/jhered/esv010

    PubMed  CrossRef  Google Scholar 

  • Adjeroud M, Guérécheau A, Vidal-Dupiol J et al (2014) Genetic diversity, clonality and connectivity in the scleractinian coral Pocillopora damicornis: a multi-scale analysis in an insular, fragmented reef system. Mar Biol 161:531–541. doi:10.1007/s00227-013-2355-9

    CrossRef  Google Scholar 

  • Alloiteau J (1952) Embranchement des coelentérés. In: Piveteau J (ed) Traité de paléontologie. Tome premier. Masson, Paris, pp 376–684

    Google Scholar 

  • Alloiteau J (1957) Contribution à la systématique des madréporaires fossiles. Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G et al (2012) The magnitude of global marine species diversity. Curr Biol 22:1–14. doi:10.1016/j.cub.2012.09.036

    CrossRef  CAS  Google Scholar 

  • Arrigoni R, Stefani F, Pichon M et al (2012) Molecular phylogeny of the Robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): an Indian Ocean perspective. Mol Phylogenet Evol 65:183–193. doi:10.1016/j.ympev.2012.06.001

    PubMed  CrossRef  Google Scholar 

  • Arrigoni R, Kitano YF, Stolarski J et al (2014a) A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zool Scr 43:661–688. doi:10.1111/zsc.12072

    CrossRef  Google Scholar 

  • Arrigoni R, Richards ZT, Chen CA et al (2014b) Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae). Contrib Zool 83:195–215

    Google Scholar 

  • Arrigoni R, Terraneo TI, Galli P, Benzoni F (2014c) Lobophylliidae (Cnidaria, Scleractinia) reshuffled: pervasive non-monophyly at genus level. Mol Phylogenet Evol 73:60–64. doi:10.1016/j.ympev.2014.01.010

    PubMed  CrossRef  Google Scholar 

  • Arrigoni R, Berumen ML, Terraneo TI et al (2015) Forgotten in the taxonomic literature: resurrection of the scleractinian coral genus Sclerophyllia (Scleractinia, Lobophylliidae) from the Arabian Peninsula and its phylogenetic relationships. Syst Biodivers 13:140–163. doi:10.1080/14772000.2014.978915

    CrossRef  Google Scholar 

  • Ayre DJ, Willis BL (1988) Population structure in the coral Pavona cactus: clonal genotypes show little phenotypic plasticity. Mar Biol 99:495–505. doi:10.1007/BF00392557

    CrossRef  Google Scholar 

  • Barbeitos MS, Romano SL, Lasker HR (2010) Repeated loss of coloniality and symbiosis in scleractinian corals. Proc Natl Acad Sci U S A 107:11877–11882. doi:10.1073/pnas.0914380107

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Benzoni F, Stefani F (2012) Porites fontanesii, a new species of hard coral (Scleractinia, Poritidae) from the southern Red Sea, the Gulf of Tadjoura, and the Gulf of Aden, and its phylogenetic relationships within the genus. Zootaxa 3447:56–68

    Google Scholar 

  • Benzoni F, Stefani F, Stolarski J et al (2007) Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contrib Zool 76:35–54

    Google Scholar 

  • Benzoni F, Stefani F, Pichon M, Galli P (2010) The name game: morpho-molecular species boundaries in the genus Psammocora (Cnidaria, Scleractinia). Zool J Linn Soc 160:421–456. doi:10.1111/j.1096-3642.2010.00622.x

    CrossRef  Google Scholar 

  • Benzoni F, Arrigoni R, Stefani F, Pichon M (2011) Phylogeny of the coral genus Plesiastrea (Cnidaria, Scleractinia). Contrib Zool 80:231–249

    Google Scholar 

  • Benzoni F, Arrigoni R, Stefani F et al (2012a) Phylogenetic position and taxonomy of Cycloseris explanulata and C. wellsi (Scleractinia: Fungiidae): lost mushroom corals find their way home. Contrib Zool 81:125–146

    Google Scholar 

  • Benzoni F, Arrigoni R, Stefani F, Stolarski J (2012b) Systematics of the coral genus Craterastrea (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses. Syst Biodivers 10:417–433. doi:10.1080/14772000.2012.744369

    CrossRef  Google Scholar 

  • Benzoni F, Arrigoni R, Waheed Z et al (2014) Phylogenetic relationships and revision of the genus Blastomussa (Cnidaria: Anthozoa: Scleractinia) with description of a new species. Raffles Bull Zool 62:358–378

    Google Scholar 

  • Best MB, Boekschoten GJ, Oosterbaan A (1984) Species concept and ecomorph variation in living and fossil Scleractinia. Palaeontogr Am 54:70–79

    Google Scholar 

  • Bongaerts P, Frade PR, Ogier JJ et al (2013) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2–60 m) on a Caribbean reef. BMC Evol Biol 13:205. doi:10.1186/1471-2148-13-205

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Boulay JN, Hellberg ME, Cortés J, Baums IB (2014) Unrecognized coral species diversity masks differences in functional ecology. Proc R Soc B Biol Sci 281:20131580. doi:10.1098/rspb.2013.1580

    CrossRef  Google Scholar 

  • Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238. doi:10.1016/S0022-0981(98)00097-5

    CrossRef  Google Scholar 

  • Budd AF (1993) Variation within and among morphospecies of Montastraea. Cour Forsch Inst Senckenb 164:241–254

    Google Scholar 

  • Budd AF (2009) Encyclopedia of life synthesis meeting report: systematics and evolution of scleractinian corals. National Museum of Natural History, Smithsonian Institution, Washington, DC

    Google Scholar 

  • Budd AF, Smith ND (2005) Diversification of a new Atlantic clade of scleractinian reef corals: insights from phylogenetic analysis of morphologic and molecular data. Paleontol Soc Pap 11:103–128

    Google Scholar 

  • Budd AF, Stolarski J (2009) Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zool 90:142–165. doi:10.1111/j.1463-6395.2008.00345.x

    CrossRef  Google Scholar 

  • Budd AF, Stolarski J (2011) Corallite wall and septal microstructure in scleractinian reef corals: comparison of molecular clades within the family Faviidae. J Morphol 272:66–88. doi:10.1002/jmor.10899

    PubMed  CrossRef  Google Scholar 

  • Budd AF, Romano SL, Smith ND, Barbeitos MS (2010) Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integr Comp Biol 50:411–427. doi:10.1093/icb/icq062

    PubMed  CrossRef  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529. doi:10.1111/j.1096-3642.2012.00855.x

    CrossRef  Google Scholar 

  • Cairns SD (1984) An application of phylogenetic analysis to the Scleractinia: family Fungiidae. Palaeontogr Am 54:49–57

    Google Scholar 

  • Cairns SD (1997) A generic revision and phylogenetic analysis of the Turbinoliidae (Cnidaria: Scleractinia). Smithson Contrib Zool 591:1–55. doi:10.5479/si.00810282.591

    CrossRef  Google Scholar 

  • Cairns SD (1999) Species richness of recent Scleractinia. Atoll Res Bull 459:1–12

    CrossRef  Google Scholar 

  • Cairns SD (2001) A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithson Contrib Zool 615:1–75. doi:10.5479/si.00810282.615

    CrossRef  Google Scholar 

  • Cairns SD (2009) Phylogenetic list of 722 valid recent azooxanthellate scleractinian species, with their junior synonyms and depth ranges. In: Roberts JM, Wheeler A, Freiwald A, Cairns SD (eds) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, Online appendix. http://www.lophelia.org/online-appendices

    Google Scholar 

  • Chen CA, Yu J-K (2000) Universal primers for amplification of mitochondrial small subunit ribosomal RNA-encoding gene in scleractinian corals. Mar Biotechnol 2:146–153. doi:10.1007/s101269900018

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen CA, Odorico DM, ten Lohuis M et al (1995) Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5′-end of the 28S rDNA. Mol Phylogenet Evol 4:175–183

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen CA, Wallace CC, Yu J-K, Wei NV (2000) Strategies for amplification by polymerase chain reaction of the complete sequence of the gene encoding nuclear large subunit ribosomal RNA in corals. Mar Biotechnol 2:558–570

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen CA, Wallace CC, Wolstenholme JK (2002) Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Mol Phylogenet Evol 23:137–149. doi:10.1016/S1055-7903(02)00008-8

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen CA, Chang CC, Wei NV et al (2004) Secondary structure and phylogenetic utility of the ribosomal internal transcribed spacer 2 (ITS2) in scleractinian corals. Zool Stud 43:759–771

    CAS  Google Scholar 

  • Chen I-P, Tang C-Y, Chiou C-Y et al (2009) Comparative analyses of coding and noncoding DNA regions indicate that Acropora (Anthozoa: Scleractina) possesses a similar evolutionary tempo of nuclear vs. mitochondrial genomes as in plants. Mar Biotechnol 11:141–152. doi:10.1007/s10126-008-9129-2

    CAS  PubMed  CrossRef  Google Scholar 

  • Chevalier J-P, Beauvais L (1987) Ordre des scléractiniaires: XI. Systématique. In: Grassé P-P, Doumenc D (eds) Traité de zoologie. Tome III. Cnidaires: Anthozoaires. Masson, Paris, pp 679–764

    Google Scholar 

  • Concepcion GT, Medina M, Toonen RJ (2006) Noncoding mitochondrial loci for corals. Mol Ecol Notes 6:1208–1211. doi:10.1111/j.1471-8286.2006.01493.x

    CAS  CrossRef  Google Scholar 

  • Concepcion GT, Polato NR, Baums IB, Toonen RJ (2010) Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conserv Genet Resour 2:11–15. doi:10.1007/s12686-009-9118-4

    CrossRef  Google Scholar 

  • Cuif J-P, Perrin C (1999) Micromorphology and microstructure as expressions of scleractinian skeletogenesis in Favia fragum (Esper, 1795) (Faviidae, Scleractinia). Zoosystema 21:137–156

    Google Scholar 

  • Cuif J-P, Lecointre G, Perrin C et al (2003) Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool Scr 32:459–473

    CrossRef  Google Scholar 

  • Curnick DJ, Head CEI, Huang D et al (2015) Setting evolutionary-based conservation priorities for a phylogenetically data-poor taxonomic group (Scleractinia). Anim Conserv. doi:10.1111/acv.12185

    Google Scholar 

  • Dai C-F, Horng S (2009a) Scleractinia fauna of Taiwan. I. The complex group. National Taiwan University, Taipei

    Google Scholar 

  • Dai C-F, Horng S (2009b) Scleractinia fauna of Taiwan. II. The robust group. National Taiwan University, Taipei

    Google Scholar 

  • Dai C-F, Fan T-Y, Yu J-K (2000) Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar Ecol Prog Ser 201:179–187. doi:10.3354/meps201179

    CrossRef  Google Scholar 

  • Daly M, Fautin DG, Cappola VA (2003) Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zool J Linn Soc 139:419–437. doi:10.1046/j.1096-3642.2003.00084.x

    CrossRef  Google Scholar 

  • Davies SW, Rahman M, Meyer E et al (2013) Novel polymorphic microsatellite markers for population genetics of the endangered Caribbean star coral, Montastraea faveolata. Mar Biodivers 43:167–172. doi:10.1007/s12526-012-0133-4

    CrossRef  Google Scholar 

  • Diekmann OE, Bak RPM, Stam WT, Olsen JL (2001) Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Mar Biol 139:221–233. doi:10.1007/s002270100584

    CAS  CrossRef  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi:10.1038/nature06614

    CAS  PubMed  CrossRef  Google Scholar 

  • Emblem Å, Karlsen BO, Evertsen J, Johansen SD (2011) Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron. Mol Phylogenet Evol 61:495–503. doi:10.1016/j.ympev.2011.07.012

    PubMed  CrossRef  Google Scholar 

  • Esper EJC (1795) Fortsetzungen der Pflanzenthiere in Abbildungen nach der Natur mit Farben erleuchtet nebst Beschreibungen. Raspeschen Buchhandlung, Nürnberg

    Google Scholar 

  • Ezaki Y (1997) The Permian coral Numidiaphyllum: new insights into anthozoan phylogeny and Triassic scleractinian origins. Palaeontology 40:1–40

    Google Scholar 

  • Ezaki Y (2000) Palaeoecological and phylogenetic implications of a new scleractiniamorph genus from Permian sponge reefs, south China. Palaeontology 43:199–217. doi:10.1111/1475-4983.00124

    CrossRef  Google Scholar 

  • Faircloth BC, McCormack JE, Crawford NG et al (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 61:717–726. doi:10.1093/sysbio/sys004

    PubMed  CrossRef  Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    CrossRef  Google Scholar 

  • Flot J-F (2007) CHAMPURU 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7:974–977

    CAS  CrossRef  Google Scholar 

  • Flot J-F (2010) SeqPHASE: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 10:162–166. doi:10.1111/j.1755-0998.2009.02732.x

    CAS  PubMed  CrossRef  Google Scholar 

  • Flot J-F, Tillier S (2006) Molecular phylogeny and systematics of the scleractinian coral genus Pocillopora in Hawaii. Proc 10th Int Coral Reef Symp, pp 24–29

    Google Scholar 

  • Flot J-F, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6:627–630. doi:10.1111/j.1471-8286.2006.01355.x

    CAS  CrossRef  Google Scholar 

  • Flot J-F, Magalon H, Cruaud C et al (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. C R Biol 331:239–247. doi:10.1016/j.crvi.2007.12.003

    PubMed  CrossRef  Google Scholar 

  • Flot J-F, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372. doi:10.1186/1471-2148-10-372

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Flot J-F, Blanchot J, Charpy L et al (2011) Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecol 11:22. doi:10.1186/1472-6785-11-22

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Forskål P (1775) Descriptiones animalium, avium, amphibiorum, piscium, insectorum, vermium. Quae In Itinere Orientali Observavit Petrus Forskål. ex officina Mölleri, Hauniæ

    Google Scholar 

  • Forsman ZH, Guzman HM, Chen CA et al (2005) An ITS region phylogeny of Siderastrea (Cnidaria: Anthozoa): is S. glynni endangered or introduced? Coral Reefs 24:343–347. doi:10.1007/s00338-005-0497-z

    CrossRef  Google Scholar 

  • Forsman ZH, Hunter CL, Fox GE, Wellington GM (2006) Is the ITS region the solution to the “species problem” in corals? Intragenomic variation, and alignment permutations in Porites, Siderastrea and outgroup taxa. Proc 10th Int Coral Reef Symp, pp 14–23

    Google Scholar 

  • Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ (2009) Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 9:45. doi:10.1186/1471-2148-9-45

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Forsman ZH, Concepcion GT, Haverkort RD et al (2010) Ecomorph or endangered coral? DNA and microstructure reveal Hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS One 5:e15021. doi:10.1371/journal.pone.0015021

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Forsman Z, Wellington GM, Fox GE, Toonen RJ (2015) Clues to unraveling the coral species problem: distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits. Peer J 3:e751. doi:10.7717/peerj.751

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Foster AB (1979a) Environmental variation in a fossil scleractinian coral. Lethaia 12:245–264. doi:10.1111/j.1502-3931.1979.tb01004.x

    CrossRef  Google Scholar 

  • Foster AB (1979b) Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J Exp Mar Biol Ecol 39:25–54. doi:10.1016/0022-0981(79)90003-0

    CrossRef  Google Scholar 

  • Foster AB (1980) Environmental variation in skeletal morphology within the Caribbean reef corals Montastraea annularis and Siderastrea siderea. Bull Mar Sci 30:678–709

    Google Scholar 

  • Fukami H (2008) Short review: molecular phylogenetic analyses of reef corals. Galaxea 10:47–55

    CrossRef  Google Scholar 

  • Fukami H, Knowlton N (2005) Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). Coral Reefs 24:410–417

    CrossRef  Google Scholar 

  • Fukami H, Nomura K (2009) Existence of a cryptic species of Montastraea valenciennesi (Milne Edwards and Haime, 1848) in Wakayama, southern Honshu, Japan [in Japanese]. J Jpn Coral Reef Soc 11:25–31

    CrossRef  Google Scholar 

  • Fukami H, Omori M, Hatta M (2000) Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from mitochondrial genes. Zool Sci 17:689–696

    CAS  PubMed  CrossRef  Google Scholar 

  • Fukami H, Omori M, Shimoike K et al (2003) Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals. Mar Biol 142:679–684. doi:10.1007/s00227-002-1001-8

    Google Scholar 

  • Fukami H, Budd AF, Levitan DR et al (2004a) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337. doi:10.1111/j.0014-3820.2004.tb01648.x

    CAS  PubMed  CrossRef  Google Scholar 

  • Fukami H, Budd AF, Paulay G et al (2004b) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835. doi:10.1038/nature02339

    CAS  PubMed  CrossRef  Google Scholar 

  • Fukami H, Chen CA, Budd AF et al (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3:e3222. doi:10.1371/journal.pone.0003222

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gill GA (1980) The fulturae (“compound synapticulae”), their structure and reconsideration of their systematic value. Acta Palaeontol Pol 25:301–310

    Google Scholar 

  • Gittenberger A, Hoeksema BW (2006) Phenotypic plasticity revealed by molecular studies on reef corals of Fungia (Cycloseris) spp. (Scleractinia: Fungiidae) near river outlets. Contrib Zool 75:195–201

    Google Scholar 

  • Gittenberger A, Reijnen BT, Hoeksema BW (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contrib Zool 80:107–132

    Google Scholar 

  • Graus RR, Macintyre IG (1976) Light control of growth form in colonial reef corals: computer simulation. Science 193:895–897. doi:10.1126/science.193.4256.895

    CAS  PubMed  CrossRef  Google Scholar 

  • Graus RR, Macintyre IG (1989) The zonation patterns of Caribbean coral reefs as controlled by wave and light energy input, bathymetric setting and reef morphology: computer simulation experiments. Coral Reefs 8:9–18

    CrossRef  Google Scholar 

  • Hatta M, Fukami H, Wang W et al (1999) Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol Biol Evol 16:1607–1613

    CAS  PubMed  CrossRef  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580. doi:10.1093/molbev/msp274

    CAS  PubMed  CrossRef  Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24. doi:10.1186/1471-2148-6-24

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Heyward AJ, Stoddart JA (1985) Genetic structure of two species of Montipora on a patch reef: conflicting results from electrophoresis and histocompatibility. Mar Biol 85:117–121

    CrossRef  Google Scholar 

  • Ho M-J, Dai C-F (2014) Coral recruitment of a subtropical coral community at Yenliao Bay, northern Taiwan. Zool Stud 53:5. doi:10.1186/1810-522X-53-5

    CrossRef  Google Scholar 

  • Hoeksema BW (1989) Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zool Verh Leiden 254:1–295

    Google Scholar 

  • Hoeksema BW (1991) Evolution of body size in mushroom corals (Scleractinia: Fungiidae) and its ecomorphological consequences. Neth J Zool 41:112–129. doi:10.1163/156854291X00072

    CrossRef  Google Scholar 

  • Hoeksema BW (1993) Historical biogeography of Fungia (Pleuractis) spp. (Scleractinia: Fungiidae), including a new species from the Seychelles. Zool Meded Leiden 67:639–654

    Google Scholar 

  • Hoeksema BW (2012) Forever in the dark: the cave-dwelling azooxanthellate reef coral Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae). Zoo Keys 228:21–37. doi:10.3897/zookeys.228.3798

    PubMed  Google Scholar 

  • Hoffmeister JE (1926) The species problem in corals. Am J Sci 12:151–156. doi:10.2475/ajs.s5-12.68.151

    CrossRef  Google Scholar 

  • Huang D (2012) Threatened reef corals of the world. PLoS One 7:e34459. doi:10.1371/journal.pone.0034459

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Huang D, Roy K (2013) Anthropogenic extinction threats and future loss of evolutionary history in reef corals. Ecol Evol 3:1184–1193. doi:10.1002/ece3.527

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Huang D, Roy K (2015) The future of evolutionary diversity in reef corals. Philos Trans R Soc B Biol Sci 370:20140010. doi:10.1098/rstb.2014.0010

    CrossRef  Google Scholar 

  • Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174. doi:10.1007/s00239-008-9069-5

    CAS  PubMed  CrossRef  Google Scholar 

  • Huang D, Meier R, Todd PA, Chou LM (2009) More evidence for pervasive paraphyly in scleractinian corals: systematic study of southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. Mol Phylogenet Evol 50:102–116. doi:10.1016/j.ympev.2008.10.012

    CAS  PubMed  CrossRef  Google Scholar 

  • Huang D, Licuanan WY, Baird AH, Fukami H (2011) Cleaning up the “Bigmessidae”: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol Biol 11:37. doi:10.1186/1471-2148-11-37

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Huang D, Benzoni F, Arrigoni R et al (2014a) Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool Scr 43:531–548. doi:10.1111/zsc.12061

    CrossRef  Google Scholar 

  • Huang D, Benzoni F, Fukami H et al (2014b) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 171:277–355. doi:10.1111/zoj.12140

    CrossRef  Google Scholar 

  • Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proc 8th Int Coral Reef Symp 2:1599–1602

    Google Scholar 

  • Isomura N, Iwao K, Fukami H (2013) Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates. PLoS One 8:e56701. doi:10.1371/journal.pone.0056701

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Janiszewska K, Stolarski J, Benzerara K et al (2011) A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals. J Morphol 272:191–203. doi:10.1002/jmor.10906

    PubMed  CrossRef  Google Scholar 

  • Janiszewska K, Jaroszewicz J, Stolarski J (2013) Skeletal ontogeny in basal scleractinian micrabaciid corals. J Morphol 274:243–257. doi:10.1002/jmor.20085

    PubMed  CrossRef  Google Scholar 

  • Janiszewska K, Stolarski J, Kitahara MV et al (2015) Microstructural disparity between basal micrabaciids and other Scleractinia: new evidence from Neogene Stephanophyllia. Lethaia. doi:10.1111/let.12119

    Google Scholar 

  • Johnson KG (1998) A phylogenetic test of accelerated turnover in Neogene Caribbean brain corals (Scleractinia: Faviidae). Palaeontology 41:1247–1268

    Google Scholar 

  • Kayal E, Roure B, Philippe H et al (2013) Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 13:5. doi:10.1186/1471-2148-13-5

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Keshavmurthy S, Yang S-Y, Alamaru A et al (2013) DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci Rep 3:1520. doi:10.1038/srep01520

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kitahara MV, Cairns SD, Miller DJ (2010a) Monophyletic origin of Caryophyllia (Scleractinia, Caryophylliidae), with descriptions of six new species. Syst Biodivers 8:91–118. doi:10.1080/14772000903571088

    CrossRef  Google Scholar 

  • Kitahara MV, Cairns SD, Stolarski J et al (2010b) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One 5:e11490. doi:10.1371/journal.pone.0011490

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kitahara MV, Stolarski J, Cairns SD et al (2012) The first modern solitary Agariciidae (Anthozoa, Scleractinia) revealed by molecular and microstructural analysis. Invertebr Syst 26:303–315. doi:10.1071/IS11053

    CrossRef  Google Scholar 

  • Kitahara MV, Cairns SD, Stolarski J, Miller DJ (2013) Deltocyathiidae, an early-diverging family of Robust corals (Anthozoa, Scleractinia). Zool Scr 42:201–212. doi:10.1111/j.1463-6409.2012.00575.x

    CrossRef  Google Scholar 

  • Kitahara MV, Lin M-F, Forêt S et al (2014) The “naked coral” hypothesis revisited – evidence for and against scleractinian monophyly. PLoS One 9:e94774. doi:10.1371/journal.pone.0094774

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kitano YF, Obuchi M, Uyeno D et al (2013) Phylogenetic and taxonomic status of the coral Goniopora stokesi and related species (Scleractinia: Poritidae) in Japan based on molecular and morphological data. Zool Stud 52:25. doi:10.1186/1810-522X-52-25

    CrossRef  Google Scholar 

  • Kitano YF, Benzoni F, Arrigoni R et al (2014) A phylogeny of the family Poritidae (Cnidaria, Scleractinia) based on molecular and morphological analyses. PLoS One 9:e98406. doi:10.1371/journal.pone.0098406

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Knittweis L, Kraemer WE, Timm J, Kochzius M (2009) Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts. Conserv Genet 10:241–249. doi:10.1007/s10592-008-9566-5

    CrossRef  Google Scholar 

  • Knowlton N, Budd AF (2001) Recognizing coral species past and present. In: Jackson JBC, Lidgard S, McKinney FK (eds) Evolutionary patterns: growth, form, and tempo in the fossil record. University of Chicago Press, Chicago, pp 97–119

    Google Scholar 

  • Knowlton N, Weil E, Weigt LA, Guzman HM (1992) Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science 255:330–333

    CAS  PubMed  CrossRef  Google Scholar 

  • Knowlton N, Mate JL, Guzman HM et al (1997) Direct evidence for reproductive isolation among the three species of the Montastraea annularis complex in central America (Panama and Honduras). Mar Biol 127:705–711. doi:10.1007/s002270050061

    CrossRef  Google Scholar 

  • Ladner JT, Palumbi SR (2012) Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Mol Ecol 21:2224–2238. doi:10.1111/j.1365-294X.2012.05528.x

    PubMed  CrossRef  Google Scholar 

  • Lam KKY, Morton B (2003) Morphological and ITS1, 5.8S, and partial ITS2 ribosomal DNA sequence distinctions between two species of Platygyra (Cnidaria: Scleractinia) from Hong Kong. Mar Biotechnol 5:555–567

    CAS  PubMed  CrossRef  Google Scholar 

  • Lamarck J-BP (1801) Système des animaux sans vertèbres. Lamarck et Deterville, Paris

    Google Scholar 

  • Lang JC (1984) Whatever works: the variable importance of skeletal and of non-skeletal characters in scleractinian taxonomy. Palaeontogr Am 54:18–44

    Google Scholar 

  • Le Goff MC, Rogers AD (2002) Characterization of 10 microsatellite loci for the deep-sea coral Lophelia pertusa (Linnaeus 1758). Mol Ecol Notes 2:164–166. doi:10.1046/j.1471-8286.2002.00190.x

    CrossRef  Google Scholar 

  • Le Goff-Vitry MC, Rogers AD, Baglow D (2004) A deep-sea slant on the molecular phylogeny of the Scleractinia. Mol Phylogenet Evol 30:167–177. doi:10.1016/S1055-7903(03)00162-3

    PubMed  CrossRef  CAS  Google Scholar 

  • Lemmon AR, Emme SA, Lemmon EM (2012) Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 61:727–744. doi:10.1093/sysbio/sys049

    CAS  PubMed  CrossRef  Google Scholar 

  • Levitan DR, Fukami H, Jara J et al (2004) Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58:308–323

    PubMed  CrossRef  Google Scholar 

  • Levitan DR, Fogarty ND, Jara J et al (2011) Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex. Evolution 65:1254–1270. doi:10.1111/j.1558-5646.2011.01235.x

    PubMed  CrossRef  Google Scholar 

  • Licuanan WY (2009) Guide to the common corals of the Bolinao-Anda reef complex, northwestern Philippines. U.P. Marine Science Institute, Diliman

    Google Scholar 

  • Lin M-F, Luzon KS, Licuanan WY et al (2011) Seventy-four universal primers for characterizing the complete mitochondrial genomes of scleractinian corals (Cnidaria; Anthozoa). Zool Stud 50:513–524

    CAS  Google Scholar 

  • Lin M-F, Kitahara MV, Luo H et al (2014) Mitochondrial genome rearrangements in the Scleractinia/Corallimorpharia complex: implications for coral phylogeny. Genome Biol Evol 6:1086–1095. doi:10.1093/gbe/evu084

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Linnaeus C (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiæ

    Google Scholar 

  • Liu L (2008) BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24:2542–2543

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol 56:504–514

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu L, Pearl DK, Brumfield RT, Edwards SV (2008) Estimating species trees using multiple-allele DNA sequence data. Evolution 62:2080–2091

    PubMed  CrossRef  Google Scholar 

  • Lopez JV, Knowlton N (1997) Discrimination of species in the Montastraea annularis complex using multiple genetic loci. Proc 8th Int Coral Reef Symp 2:1613–1618

    CAS  Google Scholar 

  • Lopez JV, Kersanach R, Rehner SA, Knowlton N (1999) Molecular determination of species boundaries in corals: genetic analysis of the Montastraea annularis complex using amplified fragment length polymorphisms and a microsatellite marker. Biol Bull 196:80–93

    CAS  PubMed  CrossRef  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  • Lowenstein JM (1985) Molecular approaches to the identification of species. Am Sci 73:541–547

    Google Scholar 

  • Loya Y, Sakai K, Heyward A (2009) Reproductive patterns of fungiid corals in Okinawa, Japan. Galaxea 11:119–129

    CrossRef  Google Scholar 

  • Luck DG, Forsman ZH, Toonen RJ et al (2013) Polyphyly and hidden species among Hawai’i’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). Peer J 1:e132. doi:10.7717/peerj.132

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30

    PubMed  CrossRef  Google Scholar 

  • Magalon H, Samadi S, Richard M et al (2004) Development of coral and zooxanthella-specific microsatellites in three species of Pocillopora (Cnidaria, Scleractinia) from French Polynesia. Mol Ecol Notes 4:206–208

    CAS  CrossRef  Google Scholar 

  • Maier E, Tollrian R, Nürnberger B (2001) Development of species-specific markers in an organism with endosymbionts: microsatellites in the scleractinian coral Seriatopora hystrix. Mol Ecol Notes 1:157–159. doi:10.1046/j.1471-8278.2001.00058.x

    CAS  CrossRef  Google Scholar 

  • Mangubhai S, Souter P, Grahn M (2007) Phenotypic variation in the coral Platygyra daedalea in Kenya: morphometry and genetics. Mar Ecol Prog Ser 345:105–115

    CAS  CrossRef  Google Scholar 

  • Manica A, Carter RW (2000) Morphological and fluorescence analysis of the Montastraea annularis species complex in Florida. Mar Biol 137:899–906

    CrossRef  Google Scholar 

  • Marcelino LA, Westneat MW, Stoyneva V et al (2013) Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS One 8:e61492. doi:10.1371/journal.pone.0061492

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Márquez LM, van Oppen MJH, Willis BL et al (2002) The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Mol Ecol 11:1339–1349

    PubMed  CrossRef  Google Scholar 

  • Márquez LM, Miller DJ, MacKenzie JB, van Oppen MJH (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:1077–1086. doi:10.1093/molbev/msg122

    PubMed  CrossRef  CAS  Google Scholar 

  • Marti-Puig P, Forsman ZH, Haverkort-Yeh RD et al (2014) Extreme phenotypic polymorphism in the coral genus Pocillopora; micro-morphology corresponds to mitochondrial groups, while colony morphology does not. Bull Mar Sci 90:211–231. doi:10.5343/bms.2012.1080

    CrossRef  Google Scholar 

  • McCormack JE, Hird SM, Zellmer AJ et al (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66:526–538. doi:10.1016/j.ympev.2011.12.007

    CAS  PubMed  CrossRef  Google Scholar 

  • McMillan J, Miller DJ (1988) Restriction analysis and DNA hybridization applied to the resolution of Acropora nobilis from Acropora formosa. Proc 6th Int Coral Reef Symp 2:775–777

    Google Scholar 

  • McMillan J, Miller DJ (1989) Nucleotide sequences of highly repetitive DNA from scleractinian corals. Gene 83:185–186. doi:10.1016/0378-1119(89)90418-6

    CAS  PubMed  CrossRef  Google Scholar 

  • McMillan J, Mahony T, Veron JEN, Miller DJ (1991) Nucleotide sequencing of highly repetitive DNA from seven species in the coral genus Acropora (Cnidaria: Scleractinia) implies a division contrary to morphological criteria. Mar Biol 110:323–327. doi:10.1007/BF01344350

    CAS  CrossRef  Google Scholar 

  • Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97

    CAS  PubMed  CrossRef  Google Scholar 

  • Medina M, Collins AG, Takaoka TL et al (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci U S A 103:9096–9100

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Miller KJ, Babcock RC (1997) Conflicting morphological and reproductive species boundaries in the coral genus Platygyra. Biol Bull 192:98–110

    CrossRef  Google Scholar 

  • Miller KJ, Benzie JAH (1997) No clear genetic distinction between morphological species within the coral genus Platygyra. Bull Mar Sci 61:907–917

    Google Scholar 

  • Miller KJ, Howard CG (2004) Isolation of microsatellites from two species of scleractinian coral. Mol Ecol Notes 4:11–13. doi:10.1046/j.1471-8286.2003.00555.x

    CAS  CrossRef  Google Scholar 

  • Milne Edwards H, Haime J (1848a) Recherches sur les polypiers. Deuxième mémoire. Monographie des Turbinolides. Ann Sci Nat, 3e Sér 9:211–344

    Google Scholar 

  • Milne Edwards H, Haime J (1848b) Recherches sur les polypiers. Premier mémoire. Observations sur la structure et le developpement des polypiers en genéral. Ann Sci Nat, 3e Sér 9:37–89

    Google Scholar 

  • Milne Edwards H, Haime J (1848c) Recherches sur les polypiers. Quatrième mémoire. Monographie des Astréides. Ann Sci Nat, 3e Sér 10:209–320

    Google Scholar 

  • Milne Edwards H, Haime J (1848d) Recherches sur les polypiers. Troisième mémoire. Monographie des Eupsammidae. Ann Sci Nat, 3e Sér 10:65–114

    Google Scholar 

  • Milne Edwards H, Haime J (1848e) Note sur la classification de la deuxième tribu de la famille des Astréides. C R Séances Acad Sci 27:490–497

    Google Scholar 

  • Milne Edwards H, Haime J (1850) Recherches sur les polypiers. Cinquième mémoire. Monographie des Oculinides. Ann Sci Nat, 3e Sér 13:63–110

    Google Scholar 

  • Milne Edwards H, Haime J (1851a) Recherches sur les polypiers. Septième mémoire. Monographie des Poritides. Ann Sci Nat, 3e Sér 16:21–70

    Google Scholar 

  • Milne Edwards H, Haime J (1851b) Recherches sur les polypiers. Sixième mémoire. Monographie des Fongides. Ann Sci Nat, 3e Sér 15:73–144

    Google Scholar 

  • Milne Edwards H, Haime J (1857) Histoire naturelle des coralliaires, ou polypes proprement dits. Tome second. Zoanthaires sclérodermés (Zoantharia Sclerodermata) ou madréporaires. Roret, Paris

    CrossRef  Google Scholar 

  • Odorico DM, Miller DJ (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Mol Biol Evol 14:465–473

    CAS  PubMed  CrossRef  Google Scholar 

  • Okubo N, Mezaki T, Nozawa Y et al (2013) Comparative embryology of eleven species of stony corals (Scleractinia). PLoS One 8:e84115. doi:10.1371/journal.pone.0084115

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Pallas PS (1766) Elenchus Zoophytorum Sistens Generum Adumbrationes Generaliores et Specierum Cognitarum Succintas Descriptiones, cum Selectis Auctorum Synonymis. Apud Franciscum Varrentrapp, Hagæ Comitum

    Google Scholar 

  • Palumbi SR, Vollmer SV, Romano SL et al (2012) The role of genes in understanding the evolutionary ecology of reef building corals. Evol Ecol 26:317–335. doi:10.1007/s10682-011-9517-3

    CrossRef  Google Scholar 

  • Pandolfi JM (1992) Successive isolation rather than evolutionary centres for the origination of Indo-Pacific reef corals. J Biogeogr 19:593–609. doi:10.2307/2845703

    CrossRef  Google Scholar 

  • Philippe H, Telford MJ (2006) Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol 21:614–620. doi:10.1016/j.tree.2006.08.004

    PubMed  CrossRef  Google Scholar 

  • Philippe H, Derelle R, Lopez P et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712. doi:10.1016/j.cub.2009.02.052

    CAS  PubMed  CrossRef  Google Scholar 

  • Pinzón JH, LaJeunesse TC (2010) Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325. doi:10.1111/j.1365-294X.2010.04939.x

    PubMed  CrossRef  CAS  Google Scholar 

  • Pinzón JH, Reyes Bonilla H, Baums IB, LaJeunesse TC (2012) Contrasting clonal structure among Pocillopora (Scleractinia) communities at two environmentally distinct sites in the Gulf of California. Coral Reefs 31:765–777. doi:10.1007/s00338-012-0887-y

    CrossRef  Google Scholar 

  • Pinzón JH, Sampayo E, Cox E et al (2013) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40:1595–1608. doi:10.1111/jbi.12110

    CrossRef  Google Scholar 

  • Pochon X, Forsman ZH, Spalding HL et al (2015) Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R Soc Open Sci 2:140351. doi:10.1073/pnas.0700466104

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601. doi:10.1080/10635150118469

    CAS  PubMed  CrossRef  Google Scholar 

  • Prada C, DeBiasse MB, Neigel JE et al (2014) Genetic species delineation among branching Caribbean Porites corals. Coral Reefs 33:1019–1030. doi:10.1007/s00338-014-1179-5

    CrossRef  Google Scholar 

  • Regier JC, Shultz JW, Zwick A et al (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083. doi:10.1038/nature08742

    CAS  PubMed  CrossRef  Google Scholar 

  • Richards ZT, van Oppen MJH, Wallace CC et al (2008) Some rare Indo-Pacific coral species are probably hybrids. PLoS One 3:e3240. doi:10.1371/journal.pone.0003240

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Richards ZT, Miller DJ, Wallace CC (2013) Molecular phylogenetics of geographically restricted Acropora species: implications for threatened species conservation. Mol Phylogenet Evol 69:837–851. doi:10.1016/j.ympev.2013.06.020

    CAS  PubMed  CrossRef  Google Scholar 

  • Ridgway T (2005) Allozyme electrophoresis still represents a powerful technique in the management of coral reefs. Biodivers Conserv 14:135–149. doi:10.1007/s10531-005-4054-4

    CrossRef  Google Scholar 

  • Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the western Pacific. Mol Ecol 11:1177–1189

    CAS  PubMed  CrossRef  Google Scholar 

  • Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 67:1043–1068

    Google Scholar 

  • Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642. doi:10.1126/science.271.5249.640

    CAS  CrossRef  Google Scholar 

  • Romano SL, Palumbi SR (1997) Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J Mol Evol 45:397–411. doi:10.1007/PL00006245

    CAS  PubMed  CrossRef  Google Scholar 

  • Romano SL, Richmond RH (2000) PCR-generated DNA fragment markers for assessing genetic variation within scleractinian coral species. Proc 9th Int Coral Reef Symp 1:125–130

    Google Scholar 

  • Roniewicz E (1989) Triassic scleractinian corals of the Zlambach Beds, northern Calcareous Alps, Austria. Denk Österr Akad Wiss Math Naturw Klasse 126:1–152

    Google Scholar 

  • Roniewicz E, Morycowa E (1993) Evolution of the Scleractinia in the light of microstructural data. Cour Forsch Inst Senckenberg 164:233–240

    Google Scholar 

  • Roniewicz E, Stanley GD Jr (1998) Middle Triassic cnidarians from the New Pass Range, central Nevada. J Paleontol 72:246–256

    CrossRef  Google Scholar 

  • Roniewicz E, Stolarski J (1999) Evolutionary trends in the epithecate scleractinian corals. Acta Palaeontol Pol 44:131–166

    Google Scholar 

  • Roniewicz E, Stolarski J (2001) Triassic roots of the amphiastraeid scleractinian corals. J Paleontol 75:34–45. doi:10.1666/0022-3360(2001)075<0034:TROTAS>2.0.CO;2

    CrossRef  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  CrossRef  Google Scholar 

  • Rubin BER, Ree RH, Moreau CS (2012) Inferring phylogenies from RAD sequence data. PLoS One 7:e33394. doi:10.1371/journal.pone.0033394

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schmidt-Roach S, Lundgren P, Miller KJ et al (2013) Assessing hidden species diversity in the coral Pocillopora damicornis from eastern Australia. Coral Reefs 32:161–172. doi:10.1007/s00338-012-0959-z

    CrossRef  Google Scholar 

  • Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc 170:1–33. doi:10.1111/zoj.12092

    CrossRef  Google Scholar 

  • Schwartz SA, Budd AF, Carlon DB (2012) Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals. BMC Evol Biol 12:123. doi:10.1186/1471-2148-12-123

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Scrutton CT (1993) A new kilbuchophyllid coral from the Ordovician of the southern uplands, Scotland. Cour Forsch Inst Senckenberg 164:153–158

    Google Scholar 

  • Scrutton CT, Clarkson ENK (1991) A new scleractinian-like coral from the Ordovician of the southern uplands, Scotland. Palaeontology 34:179–194

    Google Scholar 

  • Serrano X, Baums IB, O’Reilly K et al (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240. doi:10.1111/mec.12861

    CAS  PubMed  CrossRef  Google Scholar 

  • Severance EG, Szmant AM, Karl SA (2004a) Microsatellite loci isolated from the Caribbean coral, Montastraea annularis. Mol Ecol Notes 4:74–76

    CAS  CrossRef  Google Scholar 

  • Severance EG, Szmant AM, Karl SA (2004b) Single-copy gene markers isolated from the Caribbean coral, Montastraea annularis. Mol Ecol Notes 4:167–169

    CAS  CrossRef  Google Scholar 

  • Shearer TL, Coffroth MA (2004) Isolation of microsatellite loci from the scleractinian corals, Montastraea cavernosa and Porites astreoides. Mol Ecol Notes 4:435–437. doi:10.1111/j.1471-8286.2004.00653.x

    CAS  CrossRef  Google Scholar 

  • Shearer TL, van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487

    CAS  PubMed  CrossRef  Google Scholar 

  • Shinzato C, Shoguchi E, Kawashima T et al (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323. doi:10.1038/nature10249

    CAS  PubMed  CrossRef  Google Scholar 

  • Smith C, Chen CA, Yang H-P, Miller DJ (1997) A PCR-based method for assaying molecular variation in corals based on RFLP analysis of the ribosomal intergenic spacer region. Mol Ecol 6:683–685. doi:10.1046/j.1365-294X.1997.00226.x

    CAS  CrossRef  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446

    CAS  PubMed  CrossRef  Google Scholar 

  • Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth Sci Rev 60:195–225

    CrossRef  Google Scholar 

  • Stefani F, Benzoni F, Pichon M et al (2008a) A multidisciplinary approach to the definition of species boundaries in branching species of the coral genus Psammocora (Cnidaria, Scleractinia). Zool Scr 37:71–91. doi:10.1111/j.1463-6409.2007.00309.x

    Google Scholar 

  • Stefani F, Benzoni F, Pichon M et al (2008b) Genetic and morphometric evidence for unresolved species boundaries in the coral genus Psammocora (Cnidaria; Scleractinia). Hydrobiologia 596:153–172. doi:10.1007/s10750-007-9092-3

    CrossRef  Google Scholar 

  • Stefani F, Benzoni F, Yang S-Y et al (2011) Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 30:1033–1049. doi:10.1007/s00338-011-0797-4

    CrossRef  Google Scholar 

  • Stobart B, Benzie JAH (1994) Allozyme electrophoresis demonstrates that the scleractinian coral Montipora digitata is two species. Mar Biol 118:183–190. doi:10.1007/BF00349784

    CrossRef  Google Scholar 

  • Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284. doi:10.1007/BF00393029

    CrossRef  Google Scholar 

  • Stoddart JA (1984) Genetical structure within populations of the coral Pocillopora damicornis. Mar Biol 81:19–30. doi:10.1007/BF00397621

    CAS  CrossRef  Google Scholar 

  • Stolarski J, Roniewicz E (2001) Towards a new synthesis of evolutionary relationships and classification of Scleractinia. J Paleontol 75:1090–1108

    CrossRef  Google Scholar 

  • Stolarski J, Kitahara MV, Miller DJ et al (2011) The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol 11:316. doi:10.1186/1471-2148-11-316

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Suzuki G, Fukami H (2012) Evidence of genetic and reproductive isolation between two morphs of subtropical-dominant coral Acropora solitaryensis in the non-reef region of Japan. Zool Sci 29:134–140. doi:10.2108/zsj.29.134

    PubMed  CrossRef  Google Scholar 

  • Suzuki G, Nomura K (2013) Species boundaries of Astreopora corals (Scleractinia, Acroporidae) inferred by mitochondrial and nuclear molecular markers. Zool Sci 30:626–632. doi:10.2108/zsj.30.626

    CAS  PubMed  CrossRef  Google Scholar 

  • Szmant AM, Weil E, Miller MW, Colon DE (1997) Hybridization within the species complex of the scleractinan coral Montastraea annularis. Mar Biol 129:561–572

    CrossRef  Google Scholar 

  • Takabayashi M, Carter DA, Loh WKW, Hoegh-Guldberg O (1998a) A coral-specific primer for PCR amplification of the internal transcribed spacer region in ribosomal DNA. Mol Ecol 7:928–930

    CAS  Google Scholar 

  • Takabayashi M, Carter DA, Ward S, Hoegh-Guldberg O (1998b) Inter- and intra-specific variability in ribosomal DNA sequence in the internal transcribed spacer region of corals. In: Proceedings of the Australian Coral Reef Society 75th anniversary conference, Heron Island, Oct 1997. School of Marine Science, University of Queensland, Brisbane, pp 241–248

    Google Scholar 

  • Takabayashi M, Carter DA, Lopez JV, Hoegh-Guldberg O (2003) Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs 22:17–22

    Google Scholar 

  • Tay YC, Noreen AME, Suharsono et al (2015) Genetic connectivity of the broadcast spawning reef coral Platygyra sinensis on impacted reefs, and the description of new microsatellite markers. Coral Reefs 34:301–311. doi:10.1007/s00338-014-1206-6

    CrossRef  Google Scholar 

  • Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337. doi:10.1111/j.1469-185X.2008.00045.x

    PubMed  CrossRef  Google Scholar 

  • Torda G, Lundgren P, Willis BL, van Oppen MJH (2013a) Revisiting the connectivity puzzle of the common coral Pocillopora damicornis. Mol Ecol 22:5805–5820. doi:10.1111/mec.12540

    CAS  PubMed  CrossRef  Google Scholar 

  • Torda G, Lundgren P, Willis BL, van Oppen MJH (2013b) Genetic assignment of recruits reveals short and long distance larval dispersal in Pocillopora damicornis on the Great Barrier Reef. Mol Ecol 22:5821–5834. doi:10.1111/mec.12539

    CAS  PubMed  CrossRef  Google Scholar 

  • Torda G, Schmidt-Roach S, Peplow LM et al (2013c) A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef. PLoS One 8:e58447. doi:10.1371/journal.pone.0058447

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tsang LM, Chu KH, Nozawa Y, Chan BKK (2014) Morphological and host specificity evolution in coral symbiont barnacles (Balanomorpha: Pyrgomatidae) inferred from a multi-locus phylogeny. Mol Phylogenet Evol 77:11–22. doi:10.1016/j.ympev.2014.03.002

    PubMed  CrossRef  Google Scholar 

  • Tseng C-C, Wallace CC, Chen CA (2005) Mitogenomic analysis of Montipora cactus and Anacropora matthai (cnidaria; scleractinia; acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals. Coral Reefs 24:502–508. doi:10.1007/s00338-005-0499-x

    CrossRef  Google Scholar 

  • van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proc R Soc Lond B Biol Sci 266:179–183

    CrossRef  Google Scholar 

  • van Oppen MJH, Willis BL, van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363–1373

    CAS  PubMed  CrossRef  Google Scholar 

  • van Oppen MJH, McDonald BJ, Willis BL, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18:1315–1329

    PubMed  CrossRef  Google Scholar 

  • van Oppen MJH, Willis BL, Van Rheede T, Miller DJ (2002) Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol Ecol 11:1363–1376

    PubMed  CrossRef  Google Scholar 

  • van Oppen MJH, Koolmees EM, Veron JEN (2004) Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Mar Biol 144:9–18. doi:10.1007/s00227-003-1188-3

    CrossRef  Google Scholar 

  • van Veghel MLJ (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. I. Gametogenesis and spawning behavior. Mar Ecol Prog Ser 109:209–219

    CrossRef  Google Scholar 

  • van Veghel MLJ, Bak RPM (1993) Intraspecific variation of a dominant Caribbean reef building coral, Montastrea annularis: genetic, behavioral, and morphometric aspects. Mar Ecol Prog Ser 92:255–265

    CrossRef  Google Scholar 

  • van Veghel MLJ, Bak RPM (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. III. Reproduction in damaged and regenerating colonies. Mar Ecol Prog Ser 109:229–233

    CrossRef  Google Scholar 

  • van Veghel MLJ, Bosscher H (1995) Variation in linear growth and skeletal density within the polymorphic reef building coral Montastrea annularis. Bull Mar Sci 56:902–908

    Google Scholar 

  • van Veghel MLJ, Kahmann MEH (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. II. Fecundity and colony structure. Mar Ecol Prog Ser 109:221–227

    CrossRef  Google Scholar 

  • van Veghel MLJ, Cleary DFR, Bak RPM (1996) Interspecific interactions and competitive ability of the polymorphic reef-building coral Montastrea annularis. Bull Mar Sci 58:792–803

    Google Scholar 

  • Vaughan TW, Wells JW (1943) Revision of the suborders, families, and genera of the Scleractinia. Geol Soc Am Spec Pap 44:1–345

    Google Scholar 

  • Veron JEN (1986) Corals of Australia and the Indo-Pacific. Angus and Robertson, Sydney

    Google Scholar 

  • Veron JEN (1995) Corals in space and time. UNSW Press, Sydney

    Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN (2013) Overview of the taxonomy of zooxanthellate Scleractinia. Zool J Linn Soc 169:485–508. doi:10.1111/zoj.12076

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Veron JEN, Wallace CC (1984) Scleractinia of eastern Australia. Part V. Family Acroporidae. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Odorico DM, Chen CA, Miller DJ (1996) Reassessing evolutionary relationships of scleractinian corals. Coral Reefs 15:1–9. doi:10.1007/BF01626073

    CrossRef  Google Scholar 

  • Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Science 296:2023–2025

    CAS  PubMed  CrossRef  Google Scholar 

  • Vollmer SV, Palumbi SR (2004) Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol Ecol 13:2763–2772

    CAS  PubMed  CrossRef  Google Scholar 

  • Wallace CC (1999) Staghorn corals of the world: a revision of the coral genus Acropora. CSIRO Publishing, Collingwood

    Google Scholar 

  • Wallace CC (2012) Acroporidae of the Caribbean. Geol Belg 15:388–393

    Google Scholar 

  • Wallace CC, Chen CA, Fukami H, Muir PR (2007) Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia: Astrocoeniidae; Acroporidae). Coral Reefs 26:231–239. doi:10.1007/s00338-007-0203-4

    CrossRef  Google Scholar 

  • Wallace CC, Done BJ, Muir PR (2012) Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland. Mem Queensland Mus 57:1–255

    Google Scholar 

  • Wang W, Omori M, Hayashibara T et al (1995) Isolation and characterization of a mini-collagen gene encoding a nematocyst capsule protein from a reef-building coral, Acropora donei. Gene 152:195–200. doi:10.1016/0378-1119(95)00644-L

    CAS  PubMed  CrossRef  Google Scholar 

  • Wei NV, Wallace CC, Dai C-F et al (2006) Analyses of the ribosomal internal transcribed spacers (ITS) and the 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zool Stud 45:404–418

    CAS  Google Scholar 

  • Wei NV, Hsieh HJ, Dai C-F et al (2012) Reproductive isolation among Acropora species (Scleractinia: Acroporidae) in a marginal coral assemblage. Zool Stud 51:85–92

    Google Scholar 

  • Weil E, Knowlton N (1994) A multi-character analysis of the Caribbean coral Montastraea annularis (Ellis and Solander, 1786) and its two sibling species, M. faveolata (Ellis and Solander, 1786) and M. franksi (Gregory, 1895). Bull Mar Sci 55:151–175

    Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology. Part F: Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, pp F328–F444

    Google Scholar 

  • Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Philos Trans R Soc Lond B Biol Sci 359:571–583

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor WJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Willis BL, Ayre DJ (1985) Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenic evidence. Oecologia 65:516–525. doi:10.1007/BF00379666

    CrossRef  Google Scholar 

  • Willis BL, Babcock RC, Harrison PL, Wallace CC (1997) Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16:S53–S65

    CrossRef  Google Scholar 

  • Willis BL, van Oppen MJH, Miller DJ et al (2006) The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol Syst 37:489–517. doi:10.1146/annurev.ecolsys.37.091305.110136

    CrossRef  Google Scholar 

  • Wolstenholme JK (2004) Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar Biol 144:567–582

    CrossRef  Google Scholar 

  • Wolstenholme JK, Wallace CC, Chen CA (2003) Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs 22:155–166. doi:10.1007/s00338-003-0299-0

    CrossRef  Google Scholar 

  • Wood E (1983) Reef corals of the world: biology and field guide. TFH Publications, Hong Kong

    Google Scholar 

  • Work TM, Aeby GS (2014) Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific. Mar Ecol Prog Ser 500:1–9. doi:10.3354/meps10698

    CrossRef  Google Scholar 

  • Zilberberg C, Peluso L, Marques JA, Cunha H (2014) Polymorphic microsatellite loci for endemic Mussismilia corals (Anthozoa: Scleractinia) of the southwest Atlantic Ocean. J Hered 105:572–575. doi:10.1093/jhered/esu023

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danwei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kitahara, M.V., Fukami, H., Benzoni, F., Huang, D. (2016). The New Systematics of Scleractinia: Integrating Molecular and Morphological Evidence. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_4

Download citation