Skip to main content

The Impact of Climate Change and the Environment on Coral Growth

Abstract

Knowledge of factors that are important in reef growth and resilience helps us understand how reefs react following major environmental disturbances including overfishing, destructive fishing practices, coral bleaching, ocean acidification, sea-level rise, algal blooms, agricultural run-off, coastal and resort development, marine pollution, increasing coral diseases, invasive species, hurricane/cyclone damage and bleaching. Research in both the Indo-Pacific and in the Caribbean show how temperature and environmental extremes have influenced coral growth, recruitment and mortality. Three dimensional topography and complexity is important for reef vitality and viability in the face of environmental stressors. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. A rational polynomial function model for coral colony growth appears as the best-fitting model for coral growth, closely followed by exponential logistic, Gompertz, and von Bertalanffy models. Models have also been developed for many varieties of coral morphologies, as well as for polyp spacing in those morphologies. The chapter concludes with the suggestion that developing large Marine Protected Areas (MPAs) as part of an overall climate change policy for a country may be the best way of integrating climate change into MPA planning, management and evaluation.

Keywords

  • Modelling
  • Resilience
  • Hurricanes
  • Bleaching
  • SST
  • Sedimentation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-31305-4_35
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-31305-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 35.1
Fig. 35.2
Fig. 35.3
Fig. 35.4
Fig. 35.5
Fig. 35.6
Fig. 35.7
Fig. 35.8

References

  • Adger WN, Hughes TP, Folke C et al (2005) Social-ecological resilience to coastal disasters. Science 309:1036–1039

    CAS  CrossRef  PubMed  Google Scholar 

  • Adjeroud M, Michonneau F, Edmunds PJ et al (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28:775–780

    CrossRef  Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA et al (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc B 276:3019–3025

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Aronson RB, Precht WF (2001) Evolutionary paleoecology of Caribbean coral reefs. In: Allmon WD, Bottjer DJ (eds) Evolutionary paleoecology: the ecological context of macroevolutionary change. Columbia University Press, New York, pp 171–233

    Google Scholar 

  • Atkinson MJ, Carlson B, Crow GL (1995) Coral growth in high-nutrient, low-pH seawater: a case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14:215–223

    CrossRef  Google Scholar 

  • Bak RPM (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10:285–337

    CrossRef  Google Scholar 

  • Bardsley WG (1993) SIMFIT: a computer package for simulation, curve fitting and statistical analysis using life science models. In: Schuster S, Rigoulet M, Ouhabi R, Mazat JP (eds) Modern trends in biothermokinetics. Plenum Publishing Corporation, New York, pp 455–458

    CrossRef  Google Scholar 

  • Bardsley WG, Wood RMW, Melikhova EM (1996) Optimal design; a computer program to study the best possible spacing of design points for model discrimination. Comput Chem 20:145–157

    CAS  CrossRef  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    CAS  CrossRef  PubMed  Google Scholar 

  • Bruckner AW (2012) Static measurements of the resilience of Caribbean coral populations. Int J Trop Biol Conserv 60:39–57

    Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB et al (2010) Ocean warming slows coral growth in the Central Red Sea. Science 329:322–325

    CAS  CrossRef  PubMed  Google Scholar 

  • Carricart-Ganivet JP, Beltrán-Torres AU, Merino M, Ruiz-Zárate MA (2000) Skeletal extension, density and calcification rate of the reef building coral Montastraea annularis (Ellis and Solander) in the Mexican Caribbean. Bull Mar Sci 66:215–224

    Google Scholar 

  • Cho L (2005) Marine protected areas: a tool for integrated coastal management in Belize. Ocean Coast Manag 48:932–947

    CrossRef  Google Scholar 

  • Chong-Seng KM, Nash KL, Bellwood DR, Graham NAJ (2014) Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs 33:409–419

    CrossRef  Google Scholar 

  • Coles SL, Brown EK (2007) Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai’i: the importance of recruitment. Coral Reefs 26:705–717

    CrossRef  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    CAS  CrossRef  PubMed  Google Scholar 

  • Connell JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs 16:S101–S113

    CrossRef  Google Scholar 

  • Crabbe MJC (1984) Microcomputer analysis of hyperbolic and non-hyperbolic steady-state kinetics. Int J Biomed Comput 15:303–310

    CAS  CrossRef  PubMed  Google Scholar 

  • Crabbe MJC (1988) Simple graphical methods for use with complex ligand binding and enzyme mechanisms. Fed Eur Biochem Soc Lett 235:183–188

    CAS  CrossRef  Google Scholar 

  • Crabbe MJC (2007) Global warming and coral reefs: modelling the effect of temperature on Acropora palmata colony growth. Comput Biol Chem 31:294–297

    CAS  CrossRef  PubMed  Google Scholar 

  • Crabbe MJC (2009) Scleractinian coral population size structures and growth rates indicate coral resilience on the fringing reefs of North Jamaica. Mar Environ Res 67:189–198

    CAS  CrossRef  PubMed  Google Scholar 

  • Crabbe MJC (2010) Topography and spatial arrangement of reef-building corals on the fringing reefs of North Jamaica may influence their response to disturbance from bleaching. Mar Environ Res 69:158–162

    CAS  CrossRef  PubMed  Google Scholar 

  • Crabbe MJC (2015) How effective are Marine Protected Areas (MPAs) for coral reefs? J Mar Sci Res Dev 5:e134. doi:10.4172/2155-9910.1000e134

    Google Scholar 

  • Crabbe MJC (2016) Comparison of two reef sites on the North Coast of Jamaica over a 15-year period. Am J Clim Change 5:2–7

    CrossRef  Google Scholar 

  • Crabbe MJC, Carlin JP (2007) Industrial sedimentation lowers coral growth rates in a turbid lagoon environment, Discovery Bay, Jamaica. Int J Integr Biol 1:37–40

    Google Scholar 

  • Crabbe MJC, Smith DJ (2002) Comparison of two reef sites in the Wakatobi marine national park (SE Sulawesi, Indonesia) using digital image analysis. Coral Reefs 21:242–244

    CrossRef  Google Scholar 

  • Crabbe MJC, Smith DJ (2005) Sediment impacts on growth rates of Acropora and Porites corals from fringing reefs of Sulawesi, Indonesia. Coral Reefs 24:437–441

    CrossRef  Google Scholar 

  • Crabbe MJC, Smith DJ (2006) Modelling variations in corallite morphology of Galaxea fascicularis coral colonies with depth and light on coastal fringing reefs in the Wakatobi Marine National Park (S.E. Sulawesi, Indonesia). Comput Biol Chem 30:155–159

    CAS  CrossRef  PubMed  Google Scholar 

  • Crabbe MJC, Mendes JM, Warner GF (2002) Lack of recruitment of non-branching corals in Discovery Bay is linked to severe storms. Bull Mar Sci 70:939–945

    Google Scholar 

  • Crabbe MJC, Walker EEL, Stephenson DB (2008) The impact of weather and climate extremes on coral growth. In: Diaz HF, Murnane RJ (eds) Climate extremes and society. Cambridge University Press, New York, pp 165–188

    CrossRef  Google Scholar 

  • Crabbe MJC, Martinez E, Garcia C et al (2010) Is capacity building important in policy development for sustainability? A case study using action plans for sustainable marine protected areas in Belize. Soc Nat Resour 23:181–190

    CrossRef  Google Scholar 

  • Cruz-Pinon G, Carricart-Ganivert JP, Espinoza-Avalos J (2003) Monthly skeletal extension rates of the hermatypic corals Montastrea annularis and Montastrea faveolata: biological and environmental controls. Mar Biol 143:491–500

    CrossRef  Google Scholar 

  • Curnick DJ, Head C, Huang D et al (2015) Setting evolutionary-based conservation priorities for a phylogenetically data-poor taxonomic group (Scleractinia). Animal Conservation 18:303–312

    Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the great barrier reef and its causes. Proc Natl Acad Sci U S A 109:17995–17999

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Díaz-Pulido G, McCook LJ, Dove S et al (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4(4):e5239

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dodge RE, Vaisnys JR (1975) Hermatypic coral growth banding as an environmental recorder. Nature 258:706–708

    CrossRef  Google Scholar 

  • Done TJ (1999) Coral community adaptability to environmental change at the scales of regions, reefs and reef zones. Am Zool 39:66–79

    CrossRef  Google Scholar 

  • Dunnand DC, Halpin PN (2009) Rugosity-based regional modelling of hard-bottom habitat. Mar Ecol Prog Ser 377:1–11

    CrossRef  Google Scholar 

  • Eakin CM, Morgan JA, Heron SF et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5(11):e13969. doi:10.1371/journal.pone.0013969

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Forsman ZH, Rinkevich B, Hunter CL (2006) Investigating fragment size for culturing reef-building corals (Porites lobata and P-compressa) in ex situ nurseries. Aquaculture 261:89–97

    CrossRef  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    CAS  CrossRef  PubMed  Google Scholar 

  • Gladfelter EH, Monahan RK, Gladfelter WB (1978) Growth rates of five reef-building corals in the northeastern Caribbean. Bull Mar Sci 28:728–734

    Google Scholar 

  • Gray T, Hatchard J (2008) A complicated relationship: stakeholder participation and the ecosystem-based approach to fisheries management. Mar Policy 3:158–168

    CrossRef  Google Scholar 

  • Greenaway AM, Gordon-Smith D-A (2006) The effects of rainfall on the distribution of inorganic nitrogen and phosphorus in Discovery Bay, Jamaica. Limnol Oceanogr 51:2206–2220

    CAS  CrossRef  Google Scholar 

  • Hawkins JP, Roberts CM (2004) Effects of artisanal fishing on Caribbean coral reefs. Conserv Biol 18:215–226

    CrossRef  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CAS  CrossRef  PubMed  Google Scholar 

  • Howard KG, Schumacher BD, Parrish JD (2009) Community Structure and Habitat associations of Parrotfishes on Oahu, Hawaii. Environ Biol Fish 85:175–186

    CrossRef  Google Scholar 

  • Hubbard DK, Scaturo D (1985) Growth rates of 7 species of scleractinian corals. Bull Mar Sci 36:325–338

    Google Scholar 

  • Hudson JH (1981) Response of Montastraea annularis to environmental change in the Florida Keys. Proc 4th Int Coral Reef Symp Manila 2:233–240

    Google Scholar 

  • Hudson JH, Hanson KJ, Halley RB, Kindinger JL (1994) Environmental implications of growth rate changes in Montastrea annularis Biscayne National Park, Florida. Bull Mar Sci 5:647–669

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    CAS  CrossRef  PubMed  Google Scholar 

  • Hughes TP (2016) Survey confirms worst-ever bleaching at Great Barrier Reef. Science. doi:10.1126/science.aaf4144

    PubMed Central  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories and long-term decline of Caribbean corals. Ecology 81:2250–2263

    CrossRef  Google Scholar 

  • Huston M (1985) Variation of coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25

    CrossRef  Google Scholar 

  • Idjadi JA, Lee SC, Bruno JF et al (2006) Rapid phase-shift reversal on a Jamaican coral reef. Coral Reefs 25:209–211

    CrossRef  Google Scholar 

  • Jackson JBC (1997) Reefs since Columbus. Proc 8th Int Coral Reef Symp 1:97–106

    Google Scholar 

  • Jimenez C, Cortes J (2003) Growth of seven species of scleractinian corals in an upwelling environment of the eastern Pacific (Golfo de Papagayo, Costa Rica). Bull Mar Sci 72:187–198

    Google Scholar 

  • Jones L, Warner G, Linton D et al (2004) Status of coral reefs in the northern Caribbean and western Atlantic node of GCRNM. In: Wilkinson C (ed) Status of coral reefs of the world: 2004, vol 2. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Centre, Townsville, pp 451–472

    Google Scholar 

  • Jones L, Alcolado PM, Cala Y et al (2008) The effects of coral bleaching in the northern Caribbean and western Atlantic. In: Wilkinson C, Souter D (eds) Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Centre, Townsville, pp 73–83

    Google Scholar 

  • Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol 134:295–306

    CrossRef  Google Scholar 

  • Kaandorp JA (2012) Fractal modelling: growth and form in biology. Springer, New York

    Google Scholar 

  • Kaplan M, Liu S-T, Hannon P (2006) Intergenerational engagement in retirement communities: a case study of a community capacity-building model. J Appl Gerontol 25:406–426

    CrossRef  Google Scholar 

  • Lirman D, Orlando B, Macia S et al (2003) Coral communities of Biscayne Bay, Florida and adjacent offshore areas; diversity abundance, distribution and environmental correlates. Aquat Conserv Mar Freshwr Ecosyst 13:121–135

    CrossRef  Google Scholar 

  • Logan A, Yang L, Tomascik T (1994) Linear skeletal extension rates in two species of Diploria from high-latitude reefs in Bermuda. Coral Reefs 13:225–230

    CrossRef  Google Scholar 

  • Lough JM, Cantin NE (2014) Perspectives on massive coral growth rates in a changing ocean. Biol Bull 226:187–202

    PubMed  Google Scholar 

  • Loya Y (1976) Skeletal regeneration in a Red Sea scleractinian coral population. Nature 261:490–491

    CAS  CrossRef  PubMed  Google Scholar 

  • Luo R, Wei H, Ye L et al (2009) Photosynthetic metabolism of C3 plants shows highly cooperative regulation under changing environmental conditions: a systems biological analysis. Proc Natl Acad Sci U S A 106:847–852

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Macdonald IA, Perry CT (2003) Biological degradation of coral framework in a turbid lagoon environment, Discovery Bay, north Jamaica. Coral Reefs 22:523–535

    CrossRef  Google Scholar 

  • Mallela J, Crabbe MJC (2009) Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago. Mar Environ Res 68:158–162

    CAS  CrossRef  PubMed  Google Scholar 

  • Meesters EH, Bak RPM, Westmacott S et al (1998) A fuzzy logic model to predict coral reef development under nutrient and sediment stress. Conserv Biol 12:957–965

    CrossRef  Google Scholar 

  • Mequanent G, Taylor DFR (2007) The big push approach to African development and local capacity building: understanding the issue. Can J Dev Stud 28:9–26

    Google Scholar 

  • Merks R, Hoekstra A, Kaandorp J, Sloot P (2003) Models of coral growth: spontaneous branching, compactification and the Laplacian growth assumption. J Theor Biol 224:153–166

    CrossRef  PubMed  Google Scholar 

  • Merks R, Hoekstra A, Kaandorp J, Sloot P (2004) Polyp modelling of coral growth. J Theor Biol 228:559–576

    CrossRef  PubMed  Google Scholar 

  • Miller RL, Cruise JF (1995) Effects of suspended sediments on coral growth—evidence from remote sensing and hydrologic modelling. Remote Sens Environ 53:177–187

    CrossRef  Google Scholar 

  • Miller JR, Waara R, Muller E, Rogers C (2006) Coral bleaching and disease combine to cause extensive mortality on reefs in US Virgin islands. Coral Reefs 25:418

    CrossRef  Google Scholar 

  • Mora C (2008) A clear human footprint in the coral reefs of the Caribbean. Proc R Soc B Biol Sci 275:767–773

    CrossRef  Google Scholar 

  • Mumby PJ, Hastings A (2008) The impact of ecosystem connectivity on coral reef resilience. J Appl Ecol 45:854–862

    CrossRef  Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101

    CAS  CrossRef  PubMed  Google Scholar 

  • Nie B, Chen T, Liang M et al (1997) Relationship between coral growth rate and sea surface temperature in the northern part of the South China Sea during the past 100 years. Sci China (Ser D) 40:173–182

    CrossRef  Google Scholar 

  • Quinn NJ, Kojis BL (2008) The recent collapse of a rapid phase-shift reversal on a Jamaican north coast reef after the 2005 bleaching event. Int J Trop Biol 56(suppl 1):149–159

    Google Scholar 

  • Reiss MJ (1989) The allometry of growth and reproduction. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Ricklefs RE (1967) A graphical method for fitting equations to growth curves. Ecology 48:978–983

    CrossRef  Google Scholar 

  • Ricklefs RE (1968) Patterns of growth in birds. Ibis 110:419–451

    CrossRef  Google Scholar 

  • Sary Z, Oxenford HA, Woodley JD (1997) Effects of an increase in trap mesh size on an over-exploited coral reef fishery at Discovery Bay, Jamaica. Mar Ecol Prog Ser 154:107–120

    CrossRef  Google Scholar 

  • Scoffin TP, Tudhope AW, Brown BE et al (1992) Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 1:1–11

    CrossRef  Google Scholar 

  • Slowey NC, Crowley TJ (1995) Interdecadal variability of Northern Hemisphere circulation recorded by Gulf of Mexico corals. Geophys Res Lett 22:2345–2348

    CrossRef  Google Scholar 

  • Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci U S A 105:9256–9261

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wescott G (2002) Partnerships for capacity building: community, governments and universities working together. Ocean Coast Manag 45:549–571

    CrossRef  Google Scholar 

  • Whelan KRT, Miller J, Sanchez O, Patterson M (2007) Impact of the 2005 coral bleaching event on Porites porites and Colpophyllia natans at Tektite Reef, US Virgin Islands. Coral Reefs 26:689–693

    CrossRef  Google Scholar 

  • Woodley JD, Chornesky EA, Clifford PA et al (1981) Hurricane Allen’s impact on Jamaican coral reefs. Science 214:749–755

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgements

I am indebted to colleagues in Discovery Bay, Jamaica , the Sapodilla Cayes, Belize, and at Operation Wallacea, Indonesia, particularly Professor David Smith, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. James C. Crabbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crabbe, M.J.C. (2016). The Impact of Climate Change and the Environment on Coral Growth. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_35

Download citation