Skip to main content

Thermal-Stress Response of Coral Communities to Climate Change

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

With the current rapid rate of climate change, coral communities are being repeatedly subjected to anomalously high thermal-stress events. Most global models predict that within the next 100 years, few reef corals will survive in tropical oceans. Yet thermal stresses have long been spatially and temporally variable across the oceans, and coral communities in different geographic regions are likely to be inherently different in their capacity to tolerate thermal stress. Using a spatially explicit Bayesian approach, we examined the response of coral communities to the hazards of climate-change associated thermal stress. We used the rates of change in sea-surface temperatures and the maximum sea-surface temperatures from 1980 to 2012 as predictive covariates of global records of coral bleaching over the same time period. There were negative relationships between the rates of change in sea-surface temperatures and coral bleaching, although the results were misleading because the highest rates of change in sea-surface temperatures were recorded at high latitudes, where average sea-surface temperatures are characteristically cooler than at low latitudes. Also, the results suggested that the most hazardous localities for corals, which experienced the highest maximum sea-surface temperatures, were in the northern hemisphere, particularly in the northern and western Indian Ocean, and along the rim of the eastern and western Pacific Ocean. Coral populations in these localities have suffered the greatest mortality. When a capacity to adapt to thermal stress was considered in the model, several localities responded positively, particularly corals in the Hawaiian Islands, the northern Marshall Islands, Micronesia, the Line Islands, the Cook Islands, the southern Great Barrier Reef, and along the coast of Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ateweberhan M, McClanahan TR (2010) Relationship between historical sea-surface temperature variability and climate change-induced coral mortality in the western Indian Ocean. Mar Poll Bull 60:964–970

    Article  CAS  Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ et al (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24(1):16–20

    Article  PubMed  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80(4):435–471

    Article  Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA et al (2013) Genomic basis for coral resilience to climate change. Proc Nat Acad Sci 110:1387–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassim K, Sammarco P (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar Biol 142(2):241–252

    CAS  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2006) Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol Monogr 76(4):503–519

    Article  Google Scholar 

  • Best NG, Spiegelhalter DJ, Thomas A et al (1996) Bayesian analysis of realistically complex models. J R Stat Soc A 159:323–342

    Article  Google Scholar 

  • Bivand RS, Pebesma E, Gómez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Brown BE (1997) Adaptations of reef corals to physical environmental stress. Adv Mar Biol 31:221–299

    Article  Google Scholar 

  • Brown BE, Dunne RP, Edwards AJ et al (2014) Decadal environmental ‘memory’ in a reef coral? Mar Biol. doi:10.1007/s00227-014-2596-2

    Google Scholar 

  • Cacciapaglia C, van Woesik R (2015) Reef-coral refugia in a rapidly changing ocean. Glob Chang Biol (in press)

    Google Scholar 

  • Carpenter KE, Muhammad A, Greta A et al (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science (Washington, DC) 321(5888):560–563

    Article  CAS  Google Scholar 

  • Chollett I, Enríquez S, Mumby PJ (2014) Redefining thermal regimes to design reserves for coral reefs in the face of climate change. PLoS One 9(10):e110634

    Article  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • Donner SD, Skirving WJ, Little CM et al (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Chang Biol 11:2251–2265

    Article  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME et al (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Frieler K, Meinshausen M, Golly A et al (2012) Limiting global warming to 2°C is unlikely to save most coral reefs. Nat Clim Chang 3:165–170

    Article  Google Scholar 

  • Gingerich PD (1983) Rates of evolution: effects of time and temporal setting. Science (Washington, DC) 222:159–161

    Article  CAS  Google Scholar 

  • Gingerich PD (2009) Rates of evolution. Annu Rev Ecol Evol Syst 40:657–675

    Article  Google Scholar 

  • Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12(1):1–17

    Article  Google Scholar 

  • Goreau TF (1964) Mass expulsion of zooxanthellae from Jamaican reef communities after Hurricane Flora. Science (Washington, DC) 145:383–386

    Article  CAS  Google Scholar 

  • Guest JR, Baird AH, Maynard JA et al (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One 7(3):e33353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Fresh Res 50(8):839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science (Washington, DC) 318:1737–1742

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science (Washington, DC) 301:929–933

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R (1997) Temperature-dependent inactivation of photosystem II in symbiotic dinoflagellates. In: Proceedings of the 8th international coral reef symposium, Panama City, 24–29 Jun 1996

    Google Scholar 

  • Ikeda D, Bothwell HM, Lau MK et al (2014) A genetics-based universal community transfer function for predicting the impacts of climate change on future communities. Func Ecol 28:65–74

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, 1535 pp. doi:10.1017/CBO9781107415324

    Google Scholar 

  • LaJeunesse TC, Smith R, Walther M et al (2010) Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc R Soc Lond B Biol Sci 277(1696):2925–2934

    Article  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Loya Y, Sakai K, Yamazato K et al (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Lunn D, Jackson C, Best N et al (2012) The BUGS book: a practical introduction to Bayesian analysis. CRC Press, Boca Raton

    Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the great barrier reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  • McClanahan TR, Maina J (2003) Response of coral assemblages to the interaction between natural temperature variation and rare warm-water events. Ecosystems 6:551–563

    Article  Google Scholar 

  • McClanahan TR, Ateweberhan M, Muhando CA et al (2007) Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr 77:503–525

    Article  Google Scholar 

  • Mosblech NA, Bush MB, van Woesik R (2011) On metapopulations and microrefugia: paleoecological insights. J Biogeogr 38(3):419–429

    Article  Google Scholar 

  • Mumby P, Chisholm J, Edwards A et al (2001) Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event. Mar Ecol Prog Ser 222:209–216

    Article  Google Scholar 

  • Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull (Woods Hole) 137(3):506–523

    Article  CAS  Google Scholar 

  • Nakamura T, van Woesik R (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser 212:301–304

    Article  Google Scholar 

  • Nozawa Y (2012) Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. Biol Bull (Woods Hole) 222(3):192–202

    Google Scholar 

  • Olsen EM, Heino M, Lilly GR et al (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature (Lond) 428:932–935

    Article  CAS  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ et al (2011) Projecting coral reef futures under global warming and ocean acidification. Science (Washington, DC) 333:418–422

    Article  CAS  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull (Woods Hole) 141(2):350–363

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. http://www.R-project.org. Accessed 29 Dec 2014

  • Randall CJ, Szmant AM (2009a) Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol Bull 217(3):269–282

    PubMed  Google Scholar 

  • Randall CJ, Szmant AM (2009b) Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28(2):537–545

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD00267

    Article  Google Scholar 

  • Roth L, Koksal S, van Woesik R (2010) Effects of thermal stress on key processes driving coral population dynamics. Mar Ecol Prog Ser 411:73–87

    Article  Google Scholar 

  • Stanley GD (2003) The evolution of modern corals and their early history. Earth Sci Rev 60(3–4):195–225

    Article  Google Scholar 

  • Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. J Stat Softw 12(3):1–16

    Article  Google Scholar 

  • Takahashi S, Nakamura T, Sakamizu M et al (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45(2):251–255

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, O’Hara B, Ligges U et al (2006) Making BUGS open. R News 6:12–17

    Google Scholar 

  • Thompson DM, van Woesik R (2009) Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc R Soc Lond B Biol Sci 276:2893–2901

    Article  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Letetkin VA et al (1996) Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar Ecol Prog Ser 139:167–178

    Article  Google Scholar 

  • van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Chang 3:508–511

    Article  Google Scholar 

  • van Oppen M, Peplow M, Kininmonth LM et al (2011) Historical and contemporary factors shape the population genetic structure of the broadcast spawning coral, Acropora millepora, on the great barrier reef. Mol Ecol 20(23):4899–4914

    Article  PubMed  Google Scholar 

  • van Woesik R (2010) Calm before the spawn: global coral-spawning synchronization is explained by regional wind fields. Proc R Soc Lond B Biol Sci 277:715–722

    Article  Google Scholar 

  • van Woesik R, Sakai K, Ganase A et al (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76

    Article  Google Scholar 

  • van Woesik R, Houk P, Isechal AL et al (2012a) Climate-change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol Evol 2:2474–2484

    Article  PubMed  PubMed Central  Google Scholar 

  • van Woesik R, Franklin EC, O’Leary J et al (2012b) Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc R Soc Lond B Biol Sci 279:2448–2456

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Devantier LM, Turak E et al (2009) Delineating the coral triangle. Galaxea J Coral Reef Stud 11:91–100

    Article  Google Scholar 

  • Wagner DE, Kramer P, van Woesik R (2010) Species composition, habitat, and water quality influence coral bleaching in southern Florida. Mar Ecol Prog Ser 408:65–78

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci 96(14):8007–8012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Sandra van Woesik for editorial comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. van Woesik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Woesik, R., Cacciapaglia, C., Randall, C.J. (2016). Thermal-Stress Response of Coral Communities to Climate Change. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_33

Download citation

Publish with us

Policies and ethics