Survey of Cnidarian Gene Expression Profiles in Response to Environmental Stressors: Summarizing 20 Years of Research, What Are We Heading for?

  • Keren Maor-Landaw
  • Oren LevyEmail author


Coral research has come a long way since the pioneering coral biology studies of thermal tolerance dating back to the turn of the previous century. In great contrast, at the present time, the currently available in silico technologies enable the entire transcriptome to be surveyed in a high-throughput manner following an array of stress manipulations. Deep-sequencing is expected to revolutionize the way we study gene expression and holds the potential to answer prominent questions regarding cnidarian cellular pathways following global change scenarios. In this review we focus on cnidarian responses to environmental stressors in general and to global climate change in particular, focusing on the gene expression levels. A wide characterization of studies conducted in cnidarians following environmental stress revealed that most of the studies investigated a single stress factor and mostly thermal stress, were short-term and focused on branching corals. Subsequently, there is a lack of gene expression knowledge concerning massive corals that are known to be less susceptible to bleaching comparing to branching corals. In this review, we present a detailed list of differentially expressed genes in branching/massive corals under eight types of environmental stress. A conceptual model was constructed of the main processes occurring within the coral host cell under heat, ocean acidification and UV stress. The tables and the pathways of this review emphasize gaps in knowledge and can assist in guiding future research as they suggests which genes/processes one should look at in order to achieve a greater understanding of the cnidarians molecular processes affected by global anthropogenic stress.


Cnidaria Coral Coral bleaching Environmental stress Gene expression In silico Molecular pathways 


  1. Ainsworth TD, Wasmund K, Ukani L et al (2011) Defining the tipping point: a complex cellular life/death balance in corals in response to stress. Sci Rep 1:160. doi: 10.1038/srep00160 PubMedGoogle Scholar
  2. Aranda M, Banaszak AT, Bayer T et al (2011) Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol Ecol 20:2955–2972. doi: 10.1111/j.1365-294X.2011.05153.x PubMedCrossRefGoogle Scholar
  3. Barlowe C (1998) COPII and selective export from the endoplasmic reticulum. Biochim Biophys Acta 1404:67–76PubMedCrossRefGoogle Scholar
  4. Barshis DJ, Ladner JT, Oliver TA (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci USA 110:1387–1392. doi: 10.1073/pnas.1210224110 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bay LK, Nielsen HB, Jarmer H et al (2009) Transcriptomic variation in a coral reveals pathways of clonal organisation. Mar Genomics 2:119–125. doi: 10.1016/j.margen.2009.07.004 PubMedCrossRefGoogle Scholar
  6. Bellantuono AJ, Granados-Cifuentes C, Miller DJ et al (2012) Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7:e50685. doi: 10.1371/journal.pone.0050685 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bertucci A, Tambutté S, Supuran CT et al (2011) A new coral carbonic anhydrase in Stylophora pistillata. Mar Biotechnol 13:992–1002. doi: 10.1007/s10126-011-9363-x PubMedCrossRefGoogle Scholar
  8. Black NA, Voellmy R, Szmant AM (1995) Heat shock protein induction in Montastraea faveolata and Aiptasia pallida exposed to elevated temperatures. Biol Bull 188:234–240CrossRefGoogle Scholar
  9. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  10. Bramanti L, Movilla J, Guron M et al (2013) Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum). Glob Chang Biol 19:1897–1908. doi: 10.1111/gcb.12171 PubMedCrossRefGoogle Scholar
  11. Brewer JW, Diehl JA (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 97:12625–12630PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brown BE (1987) Worldwide death of corals—natural cyclical events or man-made pollution? Mar Pollut Bull 18:9–13. doi: 10.1016/0025-326X(87)90649-7 CrossRefGoogle Scholar
  13. Brown BE (1997) Adaptations of reef corals to physical environmental stress. Adv Mar Biol 31:222–301Google Scholar
  14. Brown BE, Suharsono (1990) Coral reefs damage and recovery of coral reefs affected by El Nifio related seawater warming in the Thousand Islands, Indonesia. Coral Reefs 8:163–170CrossRefGoogle Scholar
  15. Brown BE, Le Tissier MDA, Bythell JC (1995) Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event. Mar Biol 122:655–663CrossRefGoogle Scholar
  16. Brown BE, Downs C, Dunne R, Gibb S (2002) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129. doi: 10.3354/meps242119 CrossRefGoogle Scholar
  17. Burge CA, Mouchka ME, Harvell CD, Roberts S (2013) Immune response of the Caribbean sea fan, Gorgonia ventalina, exposed to an Aplanochytrium parasite as revealed by transcriptome sequencing. Front Physiol 4:180. doi: 10.3389/fphys.2013.00180 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi: 10.1373/clinchem.2008.112797 PubMedCrossRefGoogle Scholar
  19. Carpenter LW, Patterson MR, Bromage ES (2010) Water flow influences the spatiotemporal distribution of heat shock protein 70 within colonies of the scleractinian coral Montastrea annularis (Ellis and Solander, 1786) following heat stress: implications for coral bleaching. J Exp Mar Biol Ecol 387:52–59. doi: 10.1016/j.jembe.2010.02.019 CrossRefGoogle Scholar
  20. Carreiro-Silva M, Cerqueira T, Godinho A et al (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33(2):465–476. doi: 10.1007/s00338-014-1129-2 CrossRefGoogle Scholar
  21. Chapman JA, Kirkness EF, Simakov O et al (2010) The dynamic genome of Hydra. Nature 464:592–596. doi: 10.1038/nature08830 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Choresh O, Ron E, Loya Y (2001) The 60-kDa heat shock protein (HSP60) of the sea anemone Anemonia viridis: a potential early warning system for environmental changes. Mar Biotechnol 3:501–508. doi: 10.1007/s10126-001-0007-4 PubMedCrossRefGoogle Scholar
  23. Choresh O, Loya Y, Müller WEG et al (2004) The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization. Cell Stress Chaperones 9:38–48PubMedPubMedCentralCrossRefGoogle Scholar
  24. Choresh O, Azem A, Loya Y (2007) Over-expression of highly conserved mitochondrial 70-kDa heat-shock protein in the sea anemone Anemonia viridis. J Therm Biol 32:367–373. doi: 10.1016/j.jtherbio.2007.04.006 CrossRefGoogle Scholar
  25. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases – an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27. doi: 10.1016/j.cbpb.2008.05.010 PubMedCrossRefGoogle Scholar
  26. Clausen C (1971) Effects of temperature on the rate of 45 calcium uptake by Pocillopora damicornis. In: Lenhoff HM, Muscatine M, Davis L V (eds) Experimental coelenterate biology. University of Hawaii Press, Honolulu, pp 246–259Google Scholar
  27. Clausen CD, Roth AA (1975) Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicomis. Mar Biol 33:93–100CrossRefGoogle Scholar
  28. Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49:187–195CrossRefGoogle Scholar
  29. Cook CB, Logan A, Ward J et al (1990) Coral reefs elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event. Coral Reefs 9:45–49CrossRefGoogle Scholar
  30. Császár N, Seneca F, van Oppen M (2009) Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar Ecol Prog Ser 392:93–102. doi: 10.3354/meps08194 CrossRefGoogle Scholar
  31. DeSalvo MK, Voolstra CR, Sunagawa S et al (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971. doi: 10.1111/j.1365-294X.2008.03879.x PubMedCrossRefGoogle Scholar
  32. DeSalvo MK, Sunagawa S, Fisher PL et al (2010a) Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol Ecol 19:1174–1186. doi: 10.1111/j.1365-294X.2010.04534.x PubMedCrossRefGoogle Scholar
  33. DeSalvo MK, Sunagawa S, Voolstra C, Medina M (2010b) Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Prog Ser 402:97–113. doi: 10.3354/meps08372 CrossRefGoogle Scholar
  34. Desalvo MK, Estrada A, Sunagawa S, Medina M (2012) Transcriptomic responses to darkness stress point to common coral bleaching mechanisms. Coral Reefs 31:215–228. doi: 10.1007/s00338-011-0833-4 CrossRefGoogle Scholar
  35. Detournay O, Weis VM (2011) Role of the sphingosine rheostat in the regulation of cnidarian-dinoflagellate symbioses. Biol Bull 221:261–269PubMedGoogle Scholar
  36. Downs CA, Mueller E, Phillips S et al (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar Biotechnol 2:533–544. doi: 10.1007/s101260000038 PubMedCrossRefGoogle Scholar
  37. Downs CA, Fauth JE, Halas JC et al (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543PubMedCrossRefGoogle Scholar
  38. Downs CA, Kramarsky-Winter E, Woodley CM et al (2009a) Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata. Sci Total Environ 407:4838–4851. doi: 10.1016/j.scitotenv.2009.05.015 PubMedCrossRefGoogle Scholar
  39. Downs CA, Kramarsky-winter E, Martinez J et al (2009b) Symbiophagy as a cellular mechanism for coral bleaching. Autopjagy 5:211–216CrossRefGoogle Scholar
  40. Downs CA, Ostrander GK, Rougee L et al (2012) The use of cellular diagnostics for identifying sub-lethal stress in reef corals. Ecotoxicol Lond Engl 21:768–782. doi: 10.1007/s10646-011-0837-4 CrossRefGoogle Scholar
  41. Drake JL, Mass T, Haramaty L et al (2013) Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci USA 110:3788–3793. doi: 10.1073/pnas.1301419110 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222. doi: 10.1038/sj.cdd.4401484
  43. Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc Biol Sci 274:3079–3085. doi: 10.1098/rspb.2007.0711 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dunn SR, Pernice M, Green K et al (2012) Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out? PLoS ONE 7:e39024. doi: 10.1371/journal.pone.0039024 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Edge SE, Morgan MB, Gleason DF, Snell TW (2005) Development of a coral cDNA array to examine gene expression profiles in Montastraea faveolata exposed to environmental stress. Mar Pollut Bull 51:507–523. doi: 10.1016/j.marpolbul.2005.07.007 PubMedCrossRefGoogle Scholar
  46. Edge SE, Shearer TL, Morgan MB, Snell TW (2013) Sub-lethal coral stress: detecting molecular responses of coral populations to environmental conditions over space and time. Aquat Toxicol 128–129:135–146. doi: 10.1016/j.aquatox.2012.11.014 PubMedCrossRefGoogle Scholar
  47. Edmondson CH (1928) The ecology of an Hawaiian coral reef. Bull Bernice P Bishop Mus Honolulu 45:1–64Google Scholar
  48. Fang L, Huang S, Lin K (1997) High temperature induces the synthesis of heat-shock proteins and the elevation of intracellular calcium in the coral Acropora grandis. Coral Reefs 16:127–131CrossRefGoogle Scholar
  49. Fitt WK, Warner ME (1995) Bleaching patterns of four species of Caribbean reef corals. Bioinformatics 189:298–307Google Scholar
  50. Gates RD (1990) Seawater temperature and sublethal coral bleaching in Jamaica. Coral Reefs 8:193–197CrossRefGoogle Scholar
  51. Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical Reef corals. Am Zool 39:30–43. doi: 10.1093/icb/39.1.30 CrossRefGoogle Scholar
  52. Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–332. doi: 10.2307/1542252 CrossRefGoogle Scholar
  53. Gething MJ (1997) Guidebook to molecular chaperones and protein-folding catalysts. Oxford University Press, OxfordGoogle Scholar
  54. Glynn PW (1983) Extensive “bleaching” and death of reef corals on the Pacific Coast of Panamá. Environ Conserv 10:149–154Google Scholar
  55. Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by Echinoid bioerosion in the eastern pacific. Galaxea 7:129–160Google Scholar
  56. Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17CrossRefGoogle Scholar
  57. Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Nifio-coincident coral mortality. Coral Reefs 8:181–191CrossRefGoogle Scholar
  58. Goenaga C, Vicente VP, Armstrong RA (1989) Bleaching induced mortalities in reef corals from La Parguera, Puerto Rico: a precursor of change in the community structure of coral reefs? Caribb J Sci 25:59–65Google Scholar
  59. Goreau TJ (1990) Coral bleaching in Jamaica. Nature 343:417–417. doi: 10.1038/343417b0 CrossRefGoogle Scholar
  60. Goreau TJ, Macfarlane AH (1990) Reduced growth rate of Montastrea annularis following the 1987–1988 coral-bleaching event. Coral Reefs 8:211–215CrossRefGoogle Scholar
  61. Hahn J, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256. doi: 10.1128/MCB.24.12.5249 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Harriott VJ (1985) Mortality rates of scleractinian corals before and during a mass bleaching event. Mar Ecol Prog Ser 21:81–88CrossRefGoogle Scholar
  63. Hawkins TD, Krueger T, Becker S et al (2014) Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals. Coral Reefs 33:141–153. doi: 10.1007/s00338-013-1103-4 CrossRefGoogle Scholar
  64. Hayes RL, King CM (1995) Induction of 70-kD heat shock protein in scleractinian corals by elevated temperature: significance for coral bleaching. Mol Mar Biol Biotechnol 4:36–42PubMedGoogle Scholar
  65. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776. doi: 10.1038/35037710 PubMedCrossRefGoogle Scholar
  66. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. doi: 10.1038/nrm3270 PubMedGoogle Scholar
  67. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  68. Hoegh-Guldberg O, Smith GJ (1989) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriotopora hystrix Dana. J Exp Mar Biol Ecol 129:279–303CrossRefGoogle Scholar
  69. Hoegh-Guldberg O, McCloskey LR, Muscatine L (1987) Expulsion of zooxanthellae by symbiotic cnidarians from the Red Sea. Coral Reefs 5:201–204. doi: 10.1007/BF00300964 CrossRefGoogle Scholar
  70. Hofmann GE, Place SP (2007) Genomics-enabled research in marine ecology: challenges, risks and pay-offs. Mar Ecol Prog Ser 332:249–255CrossRefGoogle Scholar
  71. Johansen SD, Emblem A, Karlsen BO et al (2010) Approaching marine bioprospecting in hexacorals by RNA deep sequencing. N Biotechnol 27:267–275. doi: 10.1016/j.nbt.2010.02.019 PubMedCrossRefGoogle Scholar
  72. Johnson SC, Browman HI (2007) Introducing genomics, proteomics and metabolomics in marine ecology – introduction. Mar Ecol Prog Ser 332:247–248Google Scholar
  73. Jokiel PL, Coles SL (1974) Effects of heated effluent on hermatypic corals at Kahe Point, Oahu. Pac Sci 28:1–18Google Scholar
  74. Kaniewska P, Campbell PR, Kline DI et al (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS ONE 7:e34659. doi: 10.1371/journal.pone.0034659 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Karako-Lampert S, Zoccola D, Salmon-Divon M et al (2014) Transcriptome analysis of the scleractinian coral Stylophora pistillata. PLoS ONE 9:e88615PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kenkel CD, Aglyamova G, Alamaru A et al (2011) Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6:e26914. doi: 10.1371/journal.pone.0026914 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kenkel CD, Goodbody-Gringley G, Caillaud D et al (2013) Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol 22:4335–4348. doi: 10.1111/mec.12391 PubMedCrossRefGoogle Scholar
  78. Kingsley RJ, Afif E, Cox BC et al (2003) Expression of heat shock and cold shock proteins in the gorgonian Leptogorgia virgulata. J Exp Zool 296A:98–107. doi: 10.1002/jez.a.10248 CrossRefGoogle Scholar
  79. Kriegenburg F, Ellgaard L, Hartmann-Petersen R (2012) Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation. FEBS J 279:532–542. doi: 10.1111/j.1742-4658.2011.08456.x PubMedCrossRefGoogle Scholar
  80. Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257. doi: 10.1146/annurev.physiol.67.040403.103635 PubMedCrossRefGoogle Scholar
  81. Kvitt H, Rosenfeld H, Zandbank K, Tchernov D (2011) Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching. PLoS ONE 6:e28665. doi: 10.1371/journal.pone.0028665 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lasker HR, Peters EC, Alice M (1984) Coral reefs bleaching of reef Coelenterates in the San Bias Islands, Panama. Coral Reefs 3:183–190CrossRefGoogle Scholar
  83. Leggat W, Seneca F, Wasmund K et al (2011) Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6:e26687. doi: 10.1371/journal.pone.0026687 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278. doi: 10.1146/annurev.physiol.68.040104.110001 PubMedCrossRefGoogle Scholar
  85. Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, New York, pp 405–419CrossRefGoogle Scholar
  86. Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232CrossRefGoogle Scholar
  87. Leutenegger A, Kredel S, Gundel S et al (2007) Analysis of fluorescent and non-fluorescent sea anemones from the Mediterranean Sea during a bleaching event. J Exp Mar Biol Ecol 353:221–234. doi: 10.1016/j.jembe.2007.09.013 CrossRefGoogle Scholar
  88. Libro S, Kaluziak ST, Vollmer SV (2013) RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease. PLoS ONE 8:e81821. doi: 10.1371/journal.pone.0081821 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liñán-Cabello MA, Flores-Ramírez LA, Cobo-Díaz JF et al (2010) Response to short term ultraviolet stress in the reef-building coral Pocillopora capitata (Anthozoa: Scleractinia). Rev Biol Trop 58:103–118PubMedGoogle Scholar
  90. Lopez JL (2007) Applications of proteomics in marine ecology. Mar Ecol Prog Ser 332:275–279CrossRefGoogle Scholar
  91. Loya Y, Sakai K, Nakano Y, Van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131. doi: 10.1046/j.1461-0248.2001.00203.x CrossRefGoogle Scholar
  92. Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34. doi: 10.1186/1741-7007-9-34 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maor-Landaw K, Karako-Lampert S, Ben-Asher HW et al (2014) Gene expression profiles during short-term heat stress in the red sea coral Stylophora pistillata. Glob Chang Biol 20(10):3026–3035. doi: 10.1111/gcb.12592 PubMedCrossRefGoogle Scholar
  94. Matz lab (2012) University of Texas, Austin.
  95. Mayer AG (1917) Is death from high temperatures due to accumulation of acid in the tissues? Proc Natl Acad Sci USA 3:626–627PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mayer AG (1918) Ecology of the Murray Island coral reef. Proc Natl Acad Sci USA 1(4):211CrossRefGoogle Scholar
  97. Mayfield AB, Gates RD (2007) Osmoregulation in anthozoan-dinoflagellate symbiosis. Comp Biochem Physiol Part A Mol Integr Physiol 147:1–10CrossRefGoogle Scholar
  98. McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17:4–11. doi: 10.1016/j.cbpa.2012.12.008 PubMedCrossRefGoogle Scholar
  99. Merle P-L, Sabourault C, Richier S et al (2007) Catalase characterization and implication in bleaching of a symbiotic sea anemone. Free Radic Biol Med 42:236–246. doi: 10.1016/j.freeradbiomed.2006.10.038 PubMedCrossRefGoogle Scholar
  100. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46. doi: 10.1038/nrg2626 PubMedCrossRefGoogle Scholar
  101. Meyer E, Aglyamova GV, Wang S et al (2009a) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10(1):219. doi: 10.1186/1471-2164-10-219 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Meyer E, Davies S, Wang S et al (2009b) Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Mar Ecol Prog Ser 392:81–92. doi: 10.3354/meps08208 CrossRefGoogle Scholar
  103. Meyer E, Aglyamova GV, Matz MV (2011) Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol 20(17):3599–3616. doi: 10.1111/j.1365-294X.2011.05205.x PubMedGoogle Scholar
  104. Miller D, Brown BE, Sharp VA, Nganro N (1992) Changes in the expression of soluble proteins extracted from the symbiotic anemone Anemonia viridis accompany bleaching induced by hyperthermia and metal stressors. J Therm Biol 17:217–223. doi: 10.1016/0306-4565(92)90058-N CrossRefGoogle Scholar
  105. Moya A, Ganot P, Furla P, Sabourault C (2012a) The transcriptomic response to thermal stress is immediate, transient and potentiated by ultraviolet radiation in the sea anemone Anemonia viridis. Mol Ecol 21:1158–1174. doi: 10.1111/j.1365-294X.2012.05458.x PubMedCrossRefGoogle Scholar
  106. Moya A, Huisman L, Ball EE et al (2012b) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454. doi: 10.1111/j.1365-294X.2012.05554.x PubMedCrossRefGoogle Scholar
  107. Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS ONE 6:e14521. doi: 10.1371/journal.pone.0014521 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nakamura M, Morita M, Kurihara H, Mitarai S (2012) Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open 1:1–7. doi: 10.1242/bio.2011036 CrossRefGoogle Scholar
  109. Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142PubMedCrossRefGoogle Scholar
  110. Ogawa D, Bobeszko T, Ainsworth T, Leggat W (2013) The combined effects of temperature and CO2 lead to altered gene expression in Acropora aspera. Coral Reefs 32:895–907. doi: 10.1007/s00338-013-1046-9 CrossRefGoogle Scholar
  111. Olsen K, Ritson-Williams R, Ochrietor JD et al (2013) Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar Biol 160:2609–2618. doi: 10.1007/s00227-013-2255-z CrossRefGoogle Scholar
  112. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565. doi: 10.1038/nrm1150 PubMedCrossRefGoogle Scholar
  113. Perez S, Weis V (2006) Nitric oxide and cnidarian bleaching: an eviction notice mediates breakdown of a symbiosis. J Exp Biol 209:2804–2810. doi: 10.1242/jeb.02309 PubMedCrossRefGoogle Scholar
  114. Pernice M, Dunn SR, Miard T et al (2011) Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora. PLoS ONE 6:e16095. doi: 10.1371/journal.pone.0016095 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pey A, Zamoum T, Allemand D et al (2011) Depth-dependant thermotolerance of the symbiotic Mediterranean gorgonian Eunicella singularis: evidence from cellular stress markers. J Exp Mar Biol Ecol 404:73–78. doi: 10.1016/j.jembe.2011.05.007 CrossRefGoogle Scholar
  116. Polato NR, Voolstra CR, Schnetzer J et al (2010) Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata. PLoS ONE 5:e11221. doi: 10.1371/journal.pone.0011221 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Polato NR, Vera JC, Baums IB (2011) Gene discovery in the threatened elkhorn coral: 454 sequencing of the Acropora palmata transcriptome. PLoS ONE 6:e28634. doi: 10.1371/journal.pone.0028634 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Porter JW, Fitt WK, Spero HJ et al (1989) Bleaching in reef corals: physiological and stable isotopic responses. Proc Natl Acad Sci USA 86:9342–9346PubMedPubMedCentralCrossRefGoogle Scholar
  119. Portune KJ, Voolstra CR, Medina M, Szmant AM (2010) Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata. Mar Genomics 3:51–62. doi: 10.1016/j.margen.2010.03.002 PubMedCrossRefGoogle Scholar
  120. Putnam NH, Srivastava M, Hellsten U et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94. doi: 10.1126/science.1139158 PubMedCrossRefGoogle Scholar
  121. Putnam HM, Mayfield AB, Fan TY et al (2013) The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Mar Biol 160:2157–2173. doi: 10.1007/s00227-012-2129-9 CrossRefGoogle Scholar
  122. Richier S, Sabourault C, Courtiade J et al (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J 273:4186–4198. doi: 10.1111/j.1742-4658.2006.05414.x PubMedCrossRefGoogle Scholar
  123. Richier S, Rodriguez-Lanetty M, Schnitzler CE, Weis VM (2008) Response of the symbiotic cnidarian Anthopleura elegantissima transcriptome to temperature and UV increase. Comp Biochem Physiol Part D Genomics Proteomics 3:283–289. doi: 10.1016/j.cbd.2008.08.001 PubMedCrossRefGoogle Scholar
  124. Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114. doi: 10.1111/j.1365-294X.2009.04419.x PubMedCrossRefGoogle Scholar
  125. Ross C, Ritson-Williams R, Olsen K, Paul VJ (2012) Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides. Coral Reefs 32:71–79. doi: 10.1007/s00338-012-0956-2 CrossRefGoogle Scholar
  126. Sawyer SJ, Muscatine L (2001) Cellular mechanisms underlying temperature-induced bleaching in the tropical sea anemone Aiptasia pulchella. J Exp Biol 204:3443–3456PubMedGoogle Scholar
  127. Schroth W, Ender A, Schierwater B (2005) Molecular biomarkers and adaptation to environmental stress in moon jelly (Aurelia spp.). Mar Biotechnol 7:449–461. doi: 10.1007/s10126-004-4095-9 PubMedCrossRefGoogle Scholar
  128. Schwarz JA, Brokstein PB, Voolstra C et al (2008) Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata. BMC Genomics 9:97. doi: 10.1186/1471-2164-9-97 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sealfon SC, Chu TT (2011) RNA and DNA microarrays. In: Khademhosseini A, Suh K, Zourob M (eds) Biological microarrays. Humana Press, Totowa, pp 3–34CrossRefGoogle Scholar
  130. Seneca FO, Forêt S, Ball EE et al (2010) Patterns of gene expression in a scleractinian coral undergoing natural bleaching. Mar Biotechnol 12:594–604. doi: 10.1007/s10126-009-9247-5 PubMedCrossRefGoogle Scholar
  131. Seveso D, Montano S, Strona G et al (2014) The susceptibility of corals to thermal stress by analyzing Hsp60 expression. Mar Environ Res 99:69–75. doi: 10.1016/j.marenvres.2014.06.008 PubMedCrossRefGoogle Scholar
  132. Sharp VA, Miller D, Bythell JC (1994) Expression of low molecular weight HSP 70 related polypeptides from the symbiotic sea anemone Anemonia viridis Forskall in response to heat shock. J Exp Mar Biol Ecol 179:179–193CrossRefGoogle Scholar
  133. Shearer T, Rasher D, Snell T, Hay M (2012) Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae. Coral Reefs 31:1177–1192. doi: 10.1007/s00338-012-0943-7 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Shinzato C, Shoguchi E, Kawashima T et al (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–324. doi: 10.1038/nature10249 PubMedCrossRefGoogle Scholar
  135. Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090. doi: 10.1126/science.1209235 PubMedCrossRefGoogle Scholar
  136. Smith-Keune C, Dove S (2008) Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Mar Biotechnol 10:166–180. doi: 10.1007/s10126-007-9049-6 PubMedCrossRefGoogle Scholar
  137. Snyder MJ, Rossi S (2004) Stress protein (HSP70 family) expression in intertidal benthic organisms: the example of Anthopleura elegantissima (Cnidaria: Anthozoa). Sci Mar 68:155–162CrossRefGoogle Scholar
  138. Souter P, Bay LK, Andreakis N et al (2011) A multilocus, temperature stress-related gene expression profile assay in Acropora millepora, a dominant reef-building coral. Mol Ecol Resour 11:328–334. doi: 10.1111/j.1755-0998.2010.02923.x PubMedCrossRefGoogle Scholar
  139. Springer S, Spang A, Schekman R (1999) A primer on vesicle budding. Cell 97:145–148PubMedCrossRefGoogle Scholar
  140. Starcevic A, Dunlap WC, Cullum J et al (2010) Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching. PLoS ONE 5:e13975. doi: 10.1371/journal.pone.0013975 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Steen R, Muscatine L (1987) Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone. Biol Bull 172:246–263CrossRefGoogle Scholar
  142. Sunagawa S, Choi J, Forman HJ, Medina M (2008) Hyperthermic stress-induced increase in the expression of glutamate-cysteine ligase and glutathione levels in the symbiotic sea anemone Aiptasia pallida. Comp Biochem Physiol Part B 151:133–138. doi: 10.1016/j.cbpb.2008.06.007 CrossRefGoogle Scholar
  143. Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224. doi: 10.1111/j.1461-0248.2011.01607.x CrossRefGoogle Scholar
  144. Tambutté S, Tambutté E, Zoccola D et al (2006) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151:71–83. doi: 10.1007/s00227-006-0452-8 CrossRefGoogle Scholar
  145. Tchernov D, Kvitt H, Haramaty L et al (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci USA 108:9905–9909. doi: 10.1073/pnas.1106924108 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Trapido-Rosenthal H, Zielke S, Owen R et al (2005) Increased zooxanthellae nitric oxide synthase activity is associated with coral bleaching. Biol Bull 208:3–6PubMedCrossRefGoogle Scholar
  147. Traylor-Knowles N, Granger BR, Lubinski TJ et al (2011) Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral, Pocillopora damicornis. BMC Genomics 12:585. doi: 10.1186/1471-2164-12-585 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Van Verk MC, Hickman R, Pieterse CMJ, Van Wees SCM (2013) RNA-Seq: revelation of the messengers. Trends Plant Sci 18:175–179. doi: 10.1016/j.tplants.2013.02.001 PubMedCrossRefGoogle Scholar
  149. Veron J (2000) Corals of the world. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  150. Vidal-Dupiol J, Adjeroud M, Roger E et al (2009) Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiol 9:14. doi: 10.1186/1472-6793-9-14 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Vidal-Dupiol J, Zoccola D, Tambutté E et al (2013) Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: new insights from transcriptome analysis. PLoS ONE 8:e58652. doi: 10.1371/journal.pone.0058652 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Voolstra CR, Schwarz JA, Schnetzer J et al (2009) The host transcriptome remains unaltered during the establishment of coral-algal symbioses. Mol Ecol 18:1823–1833. doi: 10.1111/j.1365-294X.2009.04167.x PubMedCrossRefGoogle Scholar
  153. Wang Z, Gerstein M, Snyder M (2010) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi: 10.1038/nrg2484.RNA-Seq CrossRefGoogle Scholar
  154. Warner WK, Fitt ME, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxantheliae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299CrossRefGoogle Scholar
  155. Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066. doi: 10.1242/jeb.009597 PubMedCrossRefGoogle Scholar
  156. Weis VM, Davy SK, Hoegh-Guldberg O et al (2008) Cell biology in model systems as the key to understanding corals. Trends Ecol Evol 23:369–376. doi: 10.1016/j.tree.2008.03.004 PubMedCrossRefGoogle Scholar
  157. Woo S, Jeon H, Lee J et al (2010) Isolation of hyperthermal stress responsive genes in soft coral (Scleronephthya gracillimum). Mol Cell Toxicol 6:384–390. doi: 10.1007/s13273-010-0051-0 CrossRefGoogle Scholar
  158. Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol 8:1985–1993. doi: 10.1111/j.1462-5822.2006.00765.x PubMedCrossRefGoogle Scholar
  159. Wooldridge S a (2014) Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs 33:15–27. doi: 10.1007/s00338-013-1111-4 CrossRefGoogle Scholar
  160. Yamazato K (1970) Calcification in a solitary coral, Fungia scutaria Lamarck in relation to environmental factors. Dissertation, University of HawaiiGoogle Scholar
  161. Yonge CM (1931) The significance of the relationship between corals and zooxanthellae. Nature 22:309–311CrossRefGoogle Scholar
  162. Yuyama I, Ito Y, Watanabe T et al (2012) Differential gene expression in juvenile polyps of the coral Acropora tenuis exposed to thermal and chemical stresses. J Exp Mar Biol Ecol 430–431:17–24. doi: 10.1016/j.jembe.2012.06.020 CrossRefGoogle Scholar
  163. Zmasek CM, Zhang Q, Ye Y, Godzik A (2007) Surprising complexity of the ancestral apoptosis network. Genome Biol 8:R226. doi: 10.1186/gb-2007-8-10-r226 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Mina and Everard Goodman Faculty of Life SciencesBar Ilan UniversityRamat GanIsrael

Personalised recommendations