Advertisement

Origin and Early Diversification of Phylum Cnidaria: Key Macrofossils from the Ediacaran System of North and South America

  • Heyo Van Iten
  • Juliana M. Leme
  • Mírian L. A. F. Pacheco
  • Marcello G. Simões
  • Thomas R. Fairchild
  • Fábio Rodrigues
  • Douglas Galante
  • Paulo C. Boggiani
  • Antonio C. Marques
Chapter

Abstract

Recent molecular clock studies place the origin of phylum Cnidaria within the Cryogenian Period (ca. 850–635 Ma), with the split between the two subphyla (Anthozoaria and Medusozoa) likewise occurring during this time interval. However, the oldest cnidarian macrofossils, all medusozoans, occur in rocks of the late Ediacaran Period (ca. 560–541 Ma). Lightly skeletonized Corumbella werneri, currently known from late Ediacaran strata of Brazil, Paraguay and Nevada (USA), has been allied with coronate and conulariid scyphozoans, but it also shares gross morphological similarities with Carinachites spinatus, a possible conulariid from Cambrian Stage 1 (China), and it may be compared with Sinotubulites and Wutubus annularis from the late Ediacaran Dengying Formation (China). The strongest evidence of affinity with coronate scyphozoans is exhibited by Paraconularia sp. from a Corumbella-bearing shale interval in the latest Ediacaran Tamengo Formation of central Brazil. Furthermore, Paraconularia sp. from this rock unit establishes conulariids as a cnidarian clade that crossed the Proterozoic-Phanerozoic boundary. Finally, Haootia quadriformis from the late Ediacaran lower Fermeuse and Trepassy formations (southeastern Newfoundland, Canada) exhibits intriguing gross morphological similarities to extant staurozoans and may represent the earliest record of metazoan musculature. Together, C. werneri and latest Ediacaran Paraconularia sp. fix the split between the medusozoan classes Cubozoa and Scyphozoa at no later than ca. 543 Ma. If H. quadriformis was indeed a staurozoan or stem staurozoan, then this fossil taxon fixes the split between the class Staurozoa and all other medusozoan cnidarians at no later than ca. 560 Ma.

Keywords

Cnidaria Medusozoa Conulariids Cryogeniam Ediacaran 

Notes

Acknowledgments

HVI thanks S. Goffredo and Z. Dubinsky for inviting him to submit this contribution, and Li Guo-Xiang and Zhu Mao-Yan (Nanjing Institute of Geology and Palaeontology, China; NIGP) for reading our manuscript. This chapter was written during HVI’s sabbatical leave in the NIGP with the support of research grants from Hanover College (HVI) and the National Basic Research Program of China (Grant No. 2013CB835006) and the Natural Science Foundation of China (ZM-Y). ACM received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2011/50242-5) and CNPq (305805/2013-4; 445444/2014-2). JML received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2013/17835-8). Line drawings were prepared by W. Soares (Fig. 3.1b) and P. Busana (Figs. 3.1e, 3.3c, f, g).

References

  1. Antcliffe JB, Brasier MD (2007) Charnia and sea pens are poles apart. J Geol Soc 164:49–51CrossRefGoogle Scholar
  2. Babcock LE, Feldmann RM (1986) Devonian and Mississippian conulariids of North America. Part B. Paraconularia, Reticulaconularia, new genus and organisms rejected from Conulariida. Ann Carnegie Mus 55:411–479Google Scholar
  3. Babcock LE, Grunow AM, Sadowski AR, Leslie SA (2005) Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 220:7–18CrossRefGoogle Scholar
  4. Cai Y, Xiao S, Hong H, Yuan X (2015) New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying formation, South China. Precambrian Res 261:12–24CrossRefGoogle Scholar
  5. Chen J-Y, Oliveri P, Gao F et al (2002) Precambrian animal life: probable developmental and adult cnidarian forms from southwest China. Dev Biol 248:182–196. doi: 10.1006/dbio.2002.0714 CrossRefPubMedGoogle Scholar
  6. Chen Z, Zhou C, Xiao S et al (2014) New Ediacara fossils preserved in limestone and their ecological implications. Sci Rep. doi: 10.1038/srep04180 Google Scholar
  7. Conway Morris S, Chen M (1992) Carinachitiids, hexangulaconulariids, and Punctatus: problematic metazoans from the Early Cambrian of South China. J Paleontol 66:384–385CrossRefGoogle Scholar
  8. Cortijo I, Cai Y, Hong H et al (2015) Life history and autecology of an Ediacaran index fossil: development and dispersal of Cloudina. Gondwana Res 28:419–424Google Scholar
  9. Fairchild TR, Sanchez EAM, Pacheco MLAF, Leme JM (2012) Evolution of Precambrian life in the Brazilian geological record. Int J Astrobiology 11:309–323CrossRefGoogle Scholar
  10. Fedonkin M, Gehling JG, Grey K et al (2007) The rise of animals. Johns Hopkins University Press, BaltimoreGoogle Scholar
  11. Ford RC, Van Iten H, Clark GR III (2016) Microstructure and composition of the periderm of conulariids. J Paleontol (in press)Google Scholar
  12. Gaucher C, Boggiani PC, Sprechmann P et al (2003) Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Res 120:241–278CrossRefGoogle Scholar
  13. Glaessner MF, Wade M (1966) The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9:599–628Google Scholar
  14. Hagadorn JW, Waggoner B (2000) Ediacaran fossils from the southwestern Great Basin, United States. J Paleontol 74:349–359CrossRefGoogle Scholar
  15. Hahn G, Hahn R, Leonardos OH et al (1982) Körporlich erhaltene Scyphozoen-Reste aus dem Jungpräkambrium Brasiliens. Geol Paläontol 16:1–18Google Scholar
  16. Ivantsov AY, Fedonkin MA (2002) Conulariid-like fossil from the Vendian of Russia: a metazoan clade across the Precambrian-Cambrian boundary. Palaeontology 45:1219–1229CrossRefGoogle Scholar
  17. Laflamme M, Darroch SAF, Tweedt SM et al (2013) The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Res 23:558–573. doi: 10.1016/j.gr.2012.11.004 CrossRefGoogle Scholar
  18. Leme JM, Simões MG, Rodrigues SC et al (2008) Cladistic analysis of the suborder Conulariina Miller and Gurley, 1896 (Cnidaria, Scyphozoa; Vendian Triassic). Palaeontology 51:649–662CrossRefGoogle Scholar
  19. Leme JM, Van Iten H, Simões MG et al (2013) A new Ediacaran conulariid from the Tamengo Formation, Corumbá Group, Brazil, and the deep Precambrian evolutionary history of cnidarians. Corumbá Meeting 2013. The Neoproterozoic Paraguay Fold Belt (Brazil): glaciation, iron-manganese formation and biota. Universidade de Brasilia, BrasíliaGoogle Scholar
  20. Liu AG, Matthews JJ, Menon LR et al (2014) Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proc R Soc B. doi: 10.1098/rspb.2014.1202 Google Scholar
  21. Liu AG, Matthews JJ, Menon LR et al (2015) The arrangement of possible muscles fibres in the Ediacaran taxon Haootia quadriformis. Proc R Soc B. doi: 10.1098/rspb.2014.2949 Google Scholar
  22. Miranda LS, Collins AG, Marques AC (2015) Is Haootia quadriformis related to extant Staurozoa (Cnidaria)? Evidence from the muscular system reconsidered. Proc R Soc B. doi: 10.1098/rspb.2014.2396 PubMedPubMedCentralGoogle Scholar
  23. Moczyłowska M, Westall F, Foucher F (2014) Microstructure and biogeochemistry of the organically preserved Ediacaran metazoan Sabellidites. J Paleontol 88:224–239CrossRefGoogle Scholar
  24. Muscente AD, Xiao S (2015) New occurrences of Sphenothallus in the lower Cambrian of South China: implications for its affinities and taphonomic demineralization of shelly fossils. Palaeogeogr Palaeoclimatol Palaeoecol 437:141–164CrossRefGoogle Scholar
  25. Pacheco MLAF, Leme JM, Machado AF (2011) Taphonomic analysis and geometric modeling for the reconstruction of the Ediacaran metazoan Corumbella werneri Hahn et al. 1982 (Tamengo Formation, Corumbá Group, Brazil). J Taphonomy 9:269–283Google Scholar
  26. Pacheco MLAF, Galante D, Rodrigues F et al (2015) Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS One. doi: 10.1371/journal.pone.0114219.g006 Google Scholar
  27. Park E, Hwang D-S, Lee S-J et al (2012) Estimation of the divergence times in cnidarian evolution based on mitochondrial proteincoding genes and the fossil record. Mol Phylogenet Evol 62:329–345CrossRefPubMedGoogle Scholar
  28. Sinclair GW (1942) The Chazy Conularida and their congeners. Ann Carnegie Mus 29:219–240Google Scholar
  29. Van Iten H, Fitzke JA, Cox RS (1996) Problematical fossil cnidarians from the Upper Ordovician of the north-central USA. Palaeontology 39:1037–1064Google Scholar
  30. Van Iten H, Vhylasova Z, Zhu M-Y, Zhuo E-J (2005a) Widespread occurrence of microscopic pores in conulariids. J Paleontol 79:400–407CrossRefGoogle Scholar
  31. Van Iten H, Leme JM, Rodrigues SC, Simões MG (2005b) Reinterpretation of a conulariid-like fossil from the Vendian of Russia. Palaeontology 48:619–622CrossRefGoogle Scholar
  32. Van Iten H, Leme JM, Simões MG et al (2006a) Reassessment of the phylogenetic affinities of conulariids (?Ediacaran-Triassic) within the subphylum Medusozoa (phylum Cnidaria). J Syst Palaeontology 4:109–118CrossRefGoogle Scholar
  33. Van Iten H, Lichtenwalter M, Leme JM, Simões MG (2006b) Possible taphonomic bias in the preservation of phosphatic macroinvertebrates in the uppermost Maquoketa Formation (Upper Ordovician) of northeastern Iowa (north-central USA). J Taphonomy 4:207–220Google Scholar
  34. Van Iten H, Moussa K, Yahaya M (2008) Conulariids of the upper Talak Formation (Mississippian, Visean) of northern Niger (West Africa). J Paleontol 82:178–182Google Scholar
  35. Van Iten H, Leme JM, Marques AC, Simões MG (2013) Alternative interpretations of some earliest Ediacaran fossils from China. Acta Palaeontol Pol 58:11–113Google Scholar
  36. Van Iten H, Marques AC, Leme JM et al (2014a) Origin and early evolution of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 57:677–690CrossRefGoogle Scholar
  37. Van Iten H, Burkey MH, Leme JM, Marques AC (2014b) Cladistics and mass extinctions: the example of conulariids (Scyphozoan, Cnidaria) and the End Ordovician Extinction Event. Geol Foren Stock For 135(4):1–6. doi: 10.1080/11035897.2014.880506 Google Scholar
  38. Vinn O, Zaton M (2012) Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences. Carnets de Géologie 2012:39–47Google Scholar
  39. Wade M (1972) Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology 15:197–225Google Scholar
  40. Waggoner B (2003) The Ediacaran biotas in space and time. Integr Comp Biol 43:104–113. doi: 10.1093/icb/43.1.104 CrossRefPubMedGoogle Scholar
  41. Warren LV, Pacheco MLAF, Fairchild TR et al (2012) The dawn of animal skeletogenesis: ultrastructural analysis of the Ediacaran metazoan Corumbella werneri. Geology 40:691–694CrossRefGoogle Scholar
  42. Young GA, Hagadorn JW (2010) The fossil record of cnidarian medusae. Palaeoworld 19:212–221CrossRefGoogle Scholar
  43. Zapata F, Goetz FE, Smith AS et al (2015) Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One 10(10), e0139068. doi: 10.1371/journal.pone.0139068 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Heyo Van Iten
    • 1
    • 2
  • Juliana M. Leme
    • 3
  • Mírian L. A. F. Pacheco
    • 4
  • Marcello G. Simões
    • 5
  • Thomas R. Fairchild
    • 3
  • Fábio Rodrigues
    • 6
  • Douglas Galante
    • 7
  • Paulo C. Boggiani
    • 3
  • Antonio C. Marques
    • 8
    • 9
  1. 1.Department of GeologyHanover CollegeHanoverUSA
  2. 2.Department of Invertebrate PaleontologyCincinnati Museum CenterCincinnatiUSA
  3. 3.Geosciences InstituteUniversity of São PauloSão PauloBrazil
  4. 4.Department of BiologyFederal University of São CarlosSão PauloBrazil
  5. 5.Department of ZoologySão Paulo State UniversitySão PauloBrazil
  6. 6.Chemistry InstituteUniversity of São PauloSão PauloBrazil
  7. 7.Brazilian Synchrotron Light LaboratorySão PauloBrazil
  8. 8.Biosciences InstituteUniversity of São PauloSão PauloBrazil
  9. 9.Marine Biology CenterUniversity of São PauloSão PauloBrazil

Personalised recommendations