Skip to main content

Cassiopea and Its Zooxanthellae

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

As many cnidarians, the upside-down jellyfish Cassiopea spec. lives in an obligate symbiosis with its zooxanthellae: Dinoflagellates of the genus Symbiodinium. The symbiosis seems mutual and both partners have adapted to suit the partner’s needs. Despite the very close co-operation the zooxanthellae are not transmitted vertically but are taken up from the water column during the polyp stage. Polyps seem flexible which clades to internalize and usually take up all clades available but medusae seem much more restrictive and as far as we know only co-operate with a single Symbiodinium clade (the clade however can vary between individuals). The Cassiopea-symbiont interaction is especially interesting for researchers as Cassiopea occurs in shallow lagoon waters meaning a quite stressful environment with high temperatures and high levels of irradiation as well as potentially drastic changes in salinity and sedimentation rates. In other cnidarian-zooxanthellae partnerships these conditions would lead to a severe disturbance of the symbiosis often ultimately leading to the death of the holobiont (bleaching). The Cassiopea/Symbiodinium interaction, however, is an example of a successful co-operation under stressful environmental conditions and therefore interesting also in the context of climate change. This chapter summarizes our knowledge of the symbiosis of Cassiopea and its zooxanthellae focusing on uptake and choice of symbiosis partners by Cassiopea as well as the adaptations making the co-operation possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrego D, Ulstrup K, Willis B, VanOppen M (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond B 275:2273–2282

    Article  CAS  Google Scholar 

  • Abrego D, van Oppen M, Willis B (2009) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543

    Article  PubMed  Google Scholar 

  • Baker A (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology and biogeography. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Bandaranayake W (2006) The nature and role of pigments of marine invertebrates. Nat Prod Rep 23:223–255

    Article  CAS  PubMed  Google Scholar 

  • Baums I, Devlin-Durante M, LaJeunesse T (2014) New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 23:4203–4215

    Article  PubMed  Google Scholar 

  • Berkelmans R, Van Oppen M (2006) The role of zooxanthella in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc Lond B 273:2305–2312

    Article  Google Scholar 

  • Bigelow R (1900) The anatomy and development of Cassiopea xamachana. Mem Soc Nat Hist 5:193–236

    Google Scholar 

  • Blanquet R, Phelan M (1987) An unusual blue mesogleal protein from the mangrove jellyfish Cassiopea xamachana. Mar Biol 94:423–430

    Article  CAS  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  CAS  PubMed  Google Scholar 

  • Colley N, Trench R (1983) Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopea xamachana. Proc R Soc Lond B 219:61–82

    Article  CAS  PubMed  Google Scholar 

  • Cumbo V, Baird A, van Oppen M (2013) The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32:111–120

    Article  Google Scholar 

  • Dawson M (2003) Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Mar Biol 143:369–379, Erratum Mar Biol 144:203

    Article  Google Scholar 

  • de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, Christie M, Crossman N, Ghermandi A, Hein L, Hussain S, Kumar P, McVittie A, Portela R, Rodriguez L, ten Brink P, van Beukering P (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61

    Article  Google Scholar 

  • Done T, Ogden J, Wiebe J, Rosen B (1996) Biodiversity and ecosystem function of coral reefs. In: Mooney H, Cushman J, Medina E, Sala O, Schluze E-D (eds) Functional roles of biodiversity: a global perspective. Wiley, Chichester

    Google Scholar 

  • Dove SG, Lovell C, Fine M, Deckenbach J, Hoegh-Guldberg O, Iglesias-Prieto R, Anthony KRN (2008) Host pigments: potential facilitators of photosynthesis in coral symbiosis Plant. Cell Environ 31:1523–1533

    Article  CAS  Google Scholar 

  • Falkowski P, Dubinsky Z, Muscatine L, Porter J (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709

    Article  CAS  Google Scholar 

  • Fitt W, Trench R (1983) Endycytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal by endodermal cells of the scaphistomae of Cassiopea xamachana and resistance of the algae to host digestion. J Cell Sci 64:195–212

    CAS  PubMed  Google Scholar 

  • Fleck J, Fitt W (1999) Degrading mangrove leaves of Rhizophora mangle provide a natural cue for settlement and metamorphosis of the uside down jellyfish Cassiopea xamachana. J Exp Mar Biol Ecol 234:83–94

    Article  Google Scholar 

  • Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM (2008a) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703

    Article  CAS  PubMed  Google Scholar 

  • Frade PR, Englebert N, Faria J, Visser PM, Bak RPM (2008b) Distribution and photobiology of Symbiodinium types in different light environments of three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 27:913–925

    Article  Google Scholar 

  • Freudenthal H (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum so.nov. a zooxanthellae: taxonomy, life cycle and morphology. J Protozool 9:45–52

    Article  Google Scholar 

  • Gohar H, Eisawy A (1960) The biology of Cassiopea (from the Red Sea) (with notes on the species problem). Publ Mar Biol Stn Ghardaga 11:5–42

    Google Scholar 

  • Hoegh-Guldberg O, Bruno J (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, McCloskey L, Muscatine L (1987) Expulsion of zooxanthellae by symbiotic cnidarians from the Red Sea. Coral Reefs 5:201–204

    Article  Google Scholar 

  • Hoegh-Guldberg O, Muller-Parker G, Cook C, Gates RD, Gladfelter E, Trench R, Weis V (2007a) Len Muscatine (1932–2007) and his contributions to the understanding of algal-invertebrate endosymbiosis. Coral Reefs 26:731–739

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby P, Hooten A, Steneck R, Greenfield P, Gomez E, Harvell C, Sale P, Edwards A, Caldeira K, Knowlton N, Eakin C, Iglesias-Prieto R, Muthiga N, Bradbury R, Dubi A, Hatziolos M (2007b) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hofmann D, Hadfield M (2002) Hermaphroditism, gonochorism, and sexual reproduction in Cassiopea sp. – an immigrant in the islands of Hawai’i. Invertebr Reprod Dev 41:215–221

    Article  Google Scholar 

  • Hofmann D, Kremer B (1981) Carbon metabolism and strobitlation in Cassiopea andromedea (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates. Mar Biol 65:25–33

    Article  CAS  Google Scholar 

  • Hofmann D, Neumann R, Henne K (1978) Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar Biol 47:161–176

    Article  Google Scholar 

  • Hofmann D, Fitt W, Fleck J (1996) Checkpoints in the life-cycle of Cassiopea spp.: control of metagenesis and metamorphosis in a tropical jellyfish. Int J Dev Biol 40:331–338

    CAS  PubMed  Google Scholar 

  • Holland B, Dawson M, Crow G, Hofmann D (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence of cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128

    Article  Google Scholar 

  • Howells E, Willis B, Bay L, Van Oppen M (2013) Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef. Mol Ecol 22:3693–3708

    Article  CAS  PubMed  Google Scholar 

  • Hummelinck P (1968) Caribbean scyphomedusae of the genus Cassiopea. Stud Fauna Curacao Other Caribb Island 23:1131–1143

    Google Scholar 

  • Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B 271:1757–1763

    Article  CAS  Google Scholar 

  • Jensch F, Hofmann D (1997) The cnidomes of Cassiopea andromeda Forskal 1775, and Cassiopea xamachana Bigelow 1882 (Cnidaria, Scyphozoa). Paper presented at the Proceedings of the Sixth International Conference on Coelenterate Biology, The Netherlands 1995

    Google Scholar 

  • Jokiel P, Coles S (1977) Effects of temperature on mortality and growth of Hawaiian reef corals. Mar Biol 43:201–208

    Article  Google Scholar 

  • Jones A, Berkelmans R (2010) Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS One 5:e10437

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy E, Perry C, Halloran P, Iglesias-Prieto R, Schönberg C, Wisshak M, Form A, Carricart-Ganivet J, Fine M, Eakin C, Mumby P (2013) Avoiding coral reef functional collapse requires local and global action. Curr Biol 23:912–918

    Article  CAS  PubMed  Google Scholar 

  • Knowlton N, Brainard R, Fisher R, Moews M, Plaisance L, Caley M (2010) Coral reef biodiversity. In: McIntyre A (ed) Life in the world’s oceans. Wiley-Blackwell, Oxford

    Google Scholar 

  • LaJeunesse T (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse T (2004) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  PubMed  Google Scholar 

  • LaJeunesse T, Loh W, van Woesik R, Hoegh-Guldberg O, Schmidt G, Fitt W (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse T, Loh W, Trench R (2009) Do introduced endosymbiotic dinoflagellates “take” to new hosts? Biol Invasions 11:995–1003

    Article  Google Scholar 

  • Lampert K, Bürger P, Striewski S, Tollrian R (2012) Lack of association between color morphs of the jellyfish Cassiopea andromeda and zooxanthella clade. Mar Ecol 33:364–369

    Article  Google Scholar 

  • McGill C, Pomory C (2008) Effects of bleaching and nutrient supplementation on wet weight in the jellyfish Cassiopea xamachana (Bigelow) (Cnidaria: Scyphozoa). Mar Freshw Behav Phys 41:179–189

    Article  Google Scholar 

  • Mellas R, McIlroy S, Fitt W, Coffroth M (2014) Variation in symbiont uptake in the early ontogeny of the upside-down jellyfish, Cassiopea spp. J Exp Mar Biol Ecol 459:38–44

    Article  Google Scholar 

  • Mortillaro J, Pitt K, Lee S, Meziane T (2009) Light intensity influences the production and translocation of fatty acids by zooxanthellae in the jellyfish Cassiopea sp. J Exp Mar Biol Ecol 378:22–30

    Article  CAS  Google Scholar 

  • Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and tridacna and its control by the host. Science 156:516–519

    Article  CAS  PubMed  Google Scholar 

  • Muscatine L, Porter J (1977) Reef corals: mutualistic symbiosis adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Muscatine L, Falkowski P, Porter J, Dubinsky Z (1984) Fate of photosynthetically-fixed carbon in light and shade-adapted colonies of the symbiotic coral, Stylophora pistillata. Proc R Soc Lond B 222:181–202

    Article  CAS  Google Scholar 

  • Pearse V, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    Article  CAS  Google Scholar 

  • Pernice M, Levy O (2014) Novel tools integrating metabolic and gene function to study the impact of the environment on coral symbiosis. Front Microbiol 5:448

    Article  PubMed  PubMed Central  Google Scholar 

  • Phelan M, Matta J, Reyes Y, Fernando R, Boykins R, Blanquet R (2006) Associations between metals and the blue mesogleal protein of Cassiopea xamachana. Mar Biol 149:307–312

    Article  CAS  Google Scholar 

  • Pochon X, Gates R (2010) A new Symbiodinium clade (Dinophyceae) from Soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  CAS  PubMed  Google Scholar 

  • Pochon X, Putnam H, Burki F, Gates R (2012) Identifying and characterizing alternative molecular markes for the symbiotic and free-living dinoflagellate genus Symbiodium. PLoS One 7:e29816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwan F, Burnett J, Bloom D, Coliano T, Eldefrawi M, Erderly H, Aurelian L, Torres M, Heimer-de la Cotera E (2001) A comparison of the toxicological characteristics of two Cassiopea and Aurelia species. Toxicon 39:245–257

    Article  CAS  PubMed  Google Scholar 

  • Richmond R (1997) Reproduction and recruitment in corals: critical links in the persistence of reefs. In: Birkeland C (ed) Life and death in coral reefs. Chapman Hall, New York

    Google Scholar 

  • Roth M (2014) The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol 5:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowan R, Powers D (1991) A molecular genetic classification of zooanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  PubMed  Google Scholar 

  • Santos S (2014) Expanding the population genetic perspective of cnidarian-Symbiodinium symbiosis. Mol Ecol 23:4185–4187

    Article  PubMed  Google Scholar 

  • Schlichter D, Fricke H, Weber W (1986) Light harvesting by wavelength transformation in a symbiotic corals the Red Sea twilight zone. Mar Biol 91:403–407

    Article  Google Scholar 

  • Stat M, Gates R (2008) Vectored introductions of marine endosymbiotic dinoflagellates into Hawaii. Biol Invasions 10:579–583

    Article  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and Scleractinian hosts – symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Stimson J, Kinzie R (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Thornhill D, Daniel M, LaJeunesse T, Schmidt G, Fitt W (2006) Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodionium. J Exp Mar Biol Ecol 338:50–56

    Article  Google Scholar 

  • Trench R (1993) Microalgal-invertebrate symbioses: a review. Endocytobiosis Cell Res 9:135–175

    Google Scholar 

  • Trench R, Blank R (1987) Symbiodinium microadriaticum Freudenthal S. goreauii, sp. nov., S. kawagutii, sp. nov., and S. pilosum, sp. nov.: gymnodinioiod dinoflagellate symbionts of marine invertebrates. J Phycol 23:469–481

    Article  Google Scholar 

  • Trench R, Colley N (1983) Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopea xamachana. Proc R Soc Lond B 219:61–82

    Article  PubMed  Google Scholar 

  • Verde E, McCloskey L (1998) Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168:147–162

    Article  Google Scholar 

  • Woolridge S (2013) Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10:1647–1658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin P. Lampert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lampert, K.P. (2016). Cassiopea and Its Zooxanthellae. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_26

Download citation

Publish with us

Policies and ethics