Skip to main content

General Ecological Aspects of Anthozoan-Symbiodinium Interactions in the Mediterranean Sea

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

The aim of this chapter is to provide a general overview of the main ecological aspects of Anthozoan-Symbiodinium mutualisms in the Mediterranean Sea. There are reports of at least twelve species of symbiotic anthozans in the basin. These anthozoans establish symbiotic relations with Symbiodinium Temperate A and B2 (Symbiodinium psygmophilum), corresponding to the only two species of Symbiodinium described in the region. A synthesis of the trophic and biochemical aspects of the interaction between Symbiodinum and their cnidarian hosts is given to contribute to the understanding of the mechanisms that maintain this special association. Finally, current knowledge about the ecological importance of this interaction in engineering species is examined. This review is framed to highlight the ecological importance of this symbiotic relationship in ecosystem construction and maintenance on an enclosed, temperate marine basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth TD, Fine M, Roff G, Hoegh-Guldberg O (2008) Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. ISME J 2:67–79

    Article  CAS  PubMed  Google Scholar 

  • Antoniadou C, Chintiroglou C (2010) Biodiversity of zoobenthos associated with a Cladocora caespitosa bank in the north Aegean Sea. Rapp Commun Int Mer Méditerr 39:432

    Google Scholar 

  • Armorza-Zvuloni R, Segal R, Kramarsky-Winter E, Loya Y (2011) Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar Ecol Prog Ser 426:149–159

    Article  Google Scholar 

  • Baird A, Maynard JA (2008) Coral adaptation in the face of climate change. Science 320:15–316

    Article  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in scleractinian corals of the Caribbean and eastern Pacific. In: Lessios HA, Macintyre IG (eds) Proceedings of the 8th international coral reef symposium, Panama

    Google Scholar 

  • Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol 44:123–195

    Google Scholar 

  • Barbrook AC, Visram S, Douglas AE, Christopher JH (2006) Molecular diversity of dinoflagellate symbionts of Cnidaria: the psbA minicircle of Symbiodinium. Protist 157:159–171

    Article  CAS  PubMed  Google Scholar 

  • Blanc PL (2002) The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. Geodin Acta 15:303–317

    Article  Google Scholar 

  • Boudouresque CF (2004) Marine biodiversity in the Mediterranean: status of species, populations and communities. Sci Rep Port-Cros Nat Park Fr 20:97–146

    Google Scholar 

  • Calvo E, Simo R, Coma R, Ribes M, Pascual J, Sabates A, Gili JM, Pelejero C (2011) Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Climate Res 50:1–29

    Article  Google Scholar 

  • Carvalho S, Cúrdia J, Pereira F, Guerra-García JM, Santos MN, Cunha M (2014) Biodiversity patterns of epifaunal assemblages associated with the gorgonians Eunicella gazella and Leptogorgia lusitanica in response to host, space and time. J Sea Res 85:37–47

    Article  Google Scholar 

  • Casado-Amezúa P, Machordom A, Bernardo J, González-Wangüemert M (2014) New insights into the genetic diversity of Mediterranean zooxanthellae. Symbiosis 63:41–46

    Article  Google Scholar 

  • Cocito S, Ferrier-Pagès C, Cupido R, Rottier C, Meier-Augenstein W, Kemp H, Reynaud S, Peirano A (2013) Nutrient acquisition in four Mediterranean gorgonian species. Mar Ecol Prog Ser 473:179–188

    Article  CAS  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  CAS  PubMed  Google Scholar 

  • Coll M, Piroddi C, Steenbeek J, Kaschner K et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns and threats. PLoS One 5:e11842

    Article  PubMed  PubMed Central  Google Scholar 

  • Coma R, Ribes M (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101:205–215

    Article  Google Scholar 

  • Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci U S A 106:6176–6181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coma R, Serrano E, Linares C, Ribes M, Diaz D, Ballesteros E et al (2011) Sea urchins predation facilitates coral invasion in a marine reserve. PLoS One 6:e22017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coma R, Llorente-Llurba E, Serrano E, Gili JM, Ribes M (2015) Natural heterotrophic feeding by a temperate octocoral with symbiotic zooxanthellae: a contribution to understanding the mechanisms of die-off events. Coral Reefs 34:549–560

    Article  Google Scholar 

  • Crisci C, Bensoussan N, Romano JC, Garrabou J et al (2011) Temperature anomalies and mortality events in marine communities: insights of factors behind differential mortality impacts in the NW Mediterranean. PLoS One 6:e23814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dani V, Ganot P, Priouzeau F, Furla P, Sabourault C (2014) Are Niemann‐Pick type C proteins key players in cnidarian–dinoflagellate endosymbioses? Mol Ecol 23:4527–4540

    Article  CAS  PubMed  Google Scholar 

  • Danovaro R, Dinet A, Duineveld G, Tselepides A (1999) Benthic response to particulate fluxes in different trophic environments: a comparison between the gulf of lions–Catalan Sea (western-Mediterranean) and the Cretan Sea (eastern-Mediterranean). Program Oceanogr 44:287–312

    Article  Google Scholar 

  • Davy SK, Lucas IAN, Turner JR (1996) Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Mar Biol 126:773–783

    Article  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol R 76:229–261

    Article  CAS  Google Scholar 

  • Duclaux GN (1977) Recherches sur quelques associations symbiotiques d’algues et de métazoaires. Thèse de doctorat d’etat ès sciences naturelles, Université Pierre et Marie Curie Paris 6 (CNRS AO 12–445). 292 p

    Google Scholar 

  • Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc B Biol Sci 274:3079–3085

    Article  Google Scholar 

  • Ezzat L, Merle P-L, Furla P, Buttler A, Ferrier-Pagès C et al (2013) The Response of the Mediterranean Gorgonian Eunicella singularis to thermal stress is independent of its nutritional regime. PLoS One 8:e64370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438

    Article  Google Scholar 

  • Ferrier-Pagès C, Reynaud S, Béraud E, Rottier C, Menu D, Duong G, Gévaert F (2015) Photophysiology and daily primary production of a symbiotic gorgonian. Photosynth Res 123:95–104

    Article  PubMed  Google Scholar 

  • Fine M, Zibrowius H, Loya Y (2001) Oculinapatagonica: a non-lessepsian scleractinian coral invading the Mediterranean Sea. Mar Biol 138:1195–1203

    Article  Google Scholar 

  • Fit WK, Pardy RL, Littler MM (1982) Photosynthesis, respiration and contribution to community productivity of the symbiotic sea anemone Anthopleura elegantissima (Brandt, 1835). J Exp Mar Biol Ecol 61:213–232

    Article  Google Scholar 

  • Forcioli D, Merle PL, Caligara C, Ciosi M, Muti C, Francour P, Cerrano C, Allemand D (2011) Symbiont diversity is not involved in depth acclimation in the Mediterranean sea whip Eunicella singularis. Mar Ecol Prog Ser 439:57–71

    Article  Google Scholar 

  • Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a Zooxanthellae: taxonomy, life cycle, and morphology. Eukariotic Microbiol 9:45–52

    Google Scholar 

  • Furla P, Allemand D, Shick JM, Ferrier- Pagès C, Richier S, Plantivaux A, Merle PL, Tambutté (2005) The symbiotic anthozoan: a physiological chimera between algal and animal. Integr Comp Biol 45:595–604

    Article  CAS  PubMed  Google Scholar 

  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M et al (2009) Mass mortality in North-western Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol 15:1090–1103

    Article  Google Scholar 

  • Gori A, Bramanti L, López-González P, Thoma JN, Gili JM (2012) Characterization of the zooxanthellate and azooxanthellate morphotypes of the Mediterranean gorgonian Eunicella singularis. Mar Biol 159:1485–1496

    Article  Google Scholar 

  • Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol 213:2399–2409

    Article  PubMed  Google Scholar 

  • Jones RJ, Hoegh‐Guldberg O, Larkum AWD, Schreiber U (1998) Temperature‐induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Kersting DK, Bensoussan N, Linares C (2013) Long-term responses of the endemic reef-builder Cladocora caespitosa to Mediterranean warming. PLoS One 8:e70820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koukouras A, Kühlmann D, Voultsiadou E, Vafidis D, Dounas C, Chintiroglou C, Koutsoubas D (1998) The macrofaunal assemblage associated with the scleractinian coral Cladocora caespitosa (L.) in the Aegean Sea. Ann Inst Océanogr 74:97–114

    Google Scholar 

  • Kružić P, Benkovic L (2008) Bioconstructional features of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Mar Ecol 29:125–139

    Article  Google Scholar 

  • Kružić P, Sršen P, Benković L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a species level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, vanWoesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern great barrier reef corals relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Pettay T, Sampayo EM, Phongsuwan N, Brown B, Obura D, Hoegh-Guldberg O, Fitt WK (2010) Special paper: long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics‐based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48:1380–1391

    Article  PubMed  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Leydet PK, Hellberg ME (2015) The invasive coral Oculina patagonica has not been recently introduced to the Mediterranean from the western Atlantic. BMC Evol Biol 15:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Loh WKW, Carter D, Hoegh-Guldberg O (1998) Diversity of zooxanthellae from scleractinian corals of One tree island (The Great Barrier Reef). In: Greenwood JG, Hall NJ (eds) Proceedings of the Australian coral reef society, Brisbane

    Google Scholar 

  • Lough JM, van Oppen MJH (2009) Introduction: coral bleaching-patterns, processes, causes and consequences. Coral Bleaching. Ecol Stud 205:1–5

    Article  Google Scholar 

  • Meron D, Rodolfo-Metalpa R, Cunning R, Baker AC, Fine M, Banin E (2012) Changes in microbial communities in response to a natural pH gradient. ISME J 6:1775–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchelmore CL, Alan Verde E, Ringwood AH, Weis VM (2003) Differential accumulation of heavy metals in the sea anemone Anthopleura elegantissima as a function of symbiotic state. Aquat Toxicol 64:317–329

    Article  CAS  PubMed  Google Scholar 

  • Morri C, Peirano A, Bianchi CN (2001) Is the Mediterranean coral Cladocora caespitosa an indicator of climatic change? Archo Oceanogr Limnol 22:139–144

    Google Scholar 

  • Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D (2005) Stable isotopoes (δ13C and δ15N) of organic matrix from coral skeleton. Proc Natl Acad Sci U S A 102:1525–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mydlarz LD, Jones LE, Harvell C (2006) Innate immunity, environmental drivers and disease ecology of marine and freshwater invertebrates. Annu Rev Ecol Evol Syst 37:251–288

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). Facies 44:75–80

    Article  Google Scholar 

  • Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J (2000) Mortalité massive d’invertébrés marins: un événement sans précédenten Méditerranéenord-occidentale. Rend Acad Sci 323:853–865

    Article  CAS  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergences timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  CAS  PubMed  Google Scholar 

  • Pochon X, Putnam HM, Gates RD (2014) Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis and evolution. PeerJ 2:e394

    Article  PubMed  PubMed Central  Google Scholar 

  • Richier S, Merle PL, Furla P, Pigozzi D, Sola F, Allemand D (2003) Characterization of superoxide dismutases in anoxia-and hyperoxia-tolerant symbiotic cnidarians. BBA-Gen Subjects 1621:84–91

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Ital J Zoo 72:271–276

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Bianchi CN, Morri C, Ferrier-Pagès C (2006) Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Mar Biol 150:45–55

    Article  Google Scholar 

  • Rodriguez-Lanetty M (2003) Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Mol Phylogenet Evol 28:152–168

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2011) Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar Biol 138:1175–1181

    Google Scholar 

  • Roth MS (2014) The engine of the reef: photobiology of the coral-algal symbiosis. Adv Microbiol 5:422

    Google Scholar 

  • Rubio-Portillo, Vázquez-Luis M, Izquierdo Muñoz A, Ramos Esplá AA (2014) Distribution paterns of alien coral Oculina patagonica De Angelis D’Ossat, 1908 in Western Mediterranean Sea. J Sea Res 85:372–378

    Article  Google Scholar 

  • Salomidi M, Katsanevakis S, Issaris Y, Tsiamis K, Katsiaras N (2013) Anthropogenic disturbances of coastal habitats promotes the spread of the introduced scleractinian coral Oculina patagonica in the Mediterranean Sea. Biol Invasions 15:1961–1971

    Article  Google Scholar 

  • Sampayo AM, Dove S, LaJeunesse (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519

    Article  CAS  PubMed  Google Scholar 

  • Sartoretto S, Harmelin JG, Bachet F, Bejaoui N, Lebrun O et al (2008) The alien coral Oculina patagonica De Angelis, 1908 (Cnidaria, Scleractinia) in Algeria and Tunisia. Aquat Invasions 3:173–180

    Article  Google Scholar 

  • Savage AM, Goodson MS, Visram S, Trapido-Roshental H, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol Prog Ser 244:17–26

    Article  Google Scholar 

  • Serrano E, Coma R, Marta R (2013) Pattern of Oculina patagonica occurrence along the Iberian Peninsula Coastline: a first step to understand the factors affecting its invasion dynamics. Rapp Commint Mer Médit 40

    Google Scholar 

  • Schiller C (1993) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. Distribution and Biometry. Mar Ecol 14:205–219

    Article  Google Scholar 

  • Serrano E, Coma R (2012) A phase shift from macroalgal to coral dominance in the Mediterranean. Coral Reefs 31:1199

    Article  Google Scholar 

  • Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Paytin R, Tye Pettay D, Johnson VR, Warner ME, Lawson T (2012) Sea anemones may thrive in a high CO2 world. Global Chang Biol 18:3015–3025

    Article  Google Scholar 

  • Templado J (2014) Future trends of Mediterranean biodiversity. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea. Its history and present challenges. Springer, Dordrecht, pp 479–498

    Google Scholar 

  • Thornhill DJ, Yiang X, Pettay DT, Zhong SSR (2013) Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol 2:4499–4515

    Article  Google Scholar 

  • Tremblay P, Peirano A, Ferrier-Pagès C (2011) Heterotrophy in the Mediterranean symbiotic coral Cladocora caespitosa: comparison with two other scleractinian species. Mar Ecol Prog Ser 422:165–177

    Article  Google Scholar 

  • Turley CM (1999) The changing Mediterranean Sea – a sensitive ecosystem? Prog Oceanogr 44:387–400

    Article  Google Scholar 

  • Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Assoc UK 86:1281–1283

    Article  CAS  Google Scholar 

  • Wang J, Douglas AE (1998) Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J Exp Biol 201:2445–2453

    PubMed  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  PubMed  Google Scholar 

  • Zabala M, Ballesteros E (1989) Surface-dependent strategies and energy flux in benthic marine communities or, why corals do not exist in the Mediterranean. Sci Mar 53:3–17

    Google Scholar 

  • Zibrowius H, Ramos A (1983) Oculina patagonica. Scléractiniarie exotique en Méditerraenée-nouvelles observations dans le Sud-Est de l’Espagne. CIESM 28:297–301

    Google Scholar 

Download references

Acknowledgements

We would like to thank H. Zibrowius, TC. LaJeunesse, and MA. Coffroth for their suggestions during the initial development of ideas for this manuscript. P. Peñalver, D. León-Muez and A. Ibáñez helped in the field with the pictures. E. Lynne did help us to improve the English grammar and edition. Financial support to R. Coma and M. Ribes was provided by the Spanish Government under the CSI-Coral grant (CGL2013-43106-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Casado-Amezúa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casado-Amezúa, P. et al. (2016). General Ecological Aspects of Anthozoan-Symbiodinium Interactions in the Mediterranean Sea. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_24

Download citation

Publish with us

Policies and ethics