Skip to main content

Brooding Corals: Planulation Patterns, Larval Behavior, and Recruitment Dynamics in the Face of Environmental Change

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

The brooding reproductive mode in scleractinian corals is often associated with high recruitment success facilitating replenishment of populations following disturbance events. Thus, if conditions continue to deteriorate on coral reefs from anthropogenic impacts and global climate change, a clear understanding of patterns of planulation, larval behavior and recruitment by brooding species is needed to accurately predict future population dynamics and the overall resilience of coral reefs. Here, we review the current knowledge of these topics with specific emphasis on the effects of environmental factors and discuss implications for reproductive success and population stability. Brooding corals typically release mature larvae during planulation events that vary in synchrony on a seasonal, monthly and daily basis linked to various environmental conditions, such as seasonal sea surface temperature, the lunar and diel cycles. Release time dictates the environmental conditions that larvae will experience, such as light availability and wave action, and thus affects dispersal potential and recruitment success. Differences in larval size exist among species, as well as within broods released during the planulation events of a single species; a possible strategy to maximize the chance of fitness in unpredictable habitats. Upon release, brooded larvae are typically competent to settle within hours to days and respond to a variety of environmental cues, such as type of benthic cover and irradiance, to facilitate settlement choice. Species-specific larval photosensitivity aids in depth and substrate selection promoting survival and can ultimately influence adult distribution patterns. Studies indicate that shifts in benthic cover from environmental changes, such as algal abundance and sedimentation, may inhibit or change patterns of larval settlement, which will affect species composition and reef resilience. Research on the effects of ocean acidification and rising sea surface temperatures on the physiology, settlement and early calcification of larvae of brooding corals show mixed results, but patterns suggest that if global climate change continues at or beyond projected scenarios over the next century, recruitment may be compromised. Thus, an increased understanding of planulation patterns, larval behavior, and recruitment dynamics of brooding species will be essential for conservation and management in the face of environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe N (1937) Postlarval development of the coral Fungia actiniformis var. palawensis Doderlein. Palau Trop Biol Stn Stud 1:73–93

    Google Scholar 

  • Albright R (2011) Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals. J Mar Biol. doi:10.1155/2011/473615

    Google Scholar 

  • Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the caribbean coral Porites astreoides. Global Chang Biol 17:2478–2487

    Article  Google Scholar 

  • Arnold S, Steneck R (2011) Settling into an increasingly hostile world: the rapidly closing “recruitment window” for corals. PLoS One 6:e28681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold S, Steneck R, Mumby PJ (2010) Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar Ecol Prog Ser 414:91–105

    Article  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Ayre DJ, Hughes TP (2000) Genotype diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1605

    Article  CAS  PubMed  Google Scholar 

  • Babcock RC, Heyward AJ (1986) Larval development of certain gamete-spawning scleractinian corals. Coral Reefs 5:111–116

    Article  Google Scholar 

  • Babcock RC, Mundy C (1996) Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians. J Exp Mar Biol Ecol 206:179–201

    Article  Google Scholar 

  • Baird AH, Morse ANC (2004) Induction of metamorphosis in larvae of the brooding corals Acropra palifera and Stylophora pistillata. Mar Freshwat Res 55:469–472

    Article  Google Scholar 

  • Bassim KM, Sammarco PW (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar Biol 142:241–252

    CAS  Google Scholar 

  • Bassim KM, Sammarco PW, Snell TL (2002) Effects of temperature on success of (self and non-self) fertilization and embyogenesis in Diploria strigosa (Cnidaria, Scleractinia). Mar Biol 140:479–488

    Article  Google Scholar 

  • Benayahu Y, Well D, Kleinman M (1990) Radiation of broadcasting and brooding patterns in coral reef alcyonaceans. In: Hoshi H, Yamashita O (eds) Advances in invertebrate reproduction. Elsevier Science Publishers BV (Biomed. Div.), Amsterdam, pp 323–328

    Google Scholar 

  • Ben-David-Zaslow R, Henning G, Hofmann DK et al (1999) Reproduction in the Red Sea soft coral Heteroxenia fuscenscens: seasonality and long-term record (1991 to 1997). Mar Biol 133:553–559

    Article  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V et al (2007) Observations: oceanic climate change and sea level. Cambridge University Press, Cambridge

    Google Scholar 

  • Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51:408–414

    Article  CAS  PubMed  Google Scholar 

  • Birrell CL, McCook L, Willis B et al (2008) Effects of benthic algae on the replenishment of corals and the implications fot eh resilience of coral reefs. Oceanogr Mar Biol Annu Rev 46:25–63

    Article  Google Scholar 

  • Brazeau DA, Lasker HR (1990) Sexual reproduction and external brooding by the Caribbean gorgonian Briareum asbestinum. Mar Biol 104:465–474

    Article  Google Scholar 

  • Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238

    Article  Google Scholar 

  • Carlon DB (1999) The evolution of mating systems in tropical reef corals. Trends Ecol Evol 14:491–495

    Article  PubMed  Google Scholar 

  • Carlon DB, Olson RR (1993) Larval dispersal distance as an explanation for adult spatial pattern in two caribbean reef corals. J Exp Mar Biol Ecol 173:247–263

    Article  Google Scholar 

  • Chornesky EA, Peters EC (1987) Sexual reproduction and colony growth in the scleractinian coral Porites astreoides. Biol Bull 172:161–177

    Article  Google Scholar 

  • Chua C, Leggat W, Moya A et al (2013) Temperature affects the early life history stages of corals more than near future ocean acidification. Mar Ecol Prog Ser 475:85–92

    Article  Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127

    Article  Google Scholar 

  • Cohen AL, McCorkle DC, de Putron S et al (2009) Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification. Geochem Geophys Geosyst 10(7):1–12. doi:10.1029/2009GC002411

    Article  CAS  Google Scholar 

  • Coma R, Ribes M, Zabala M et al (1995) Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Mar Ecol Prog Ser 117:173–183

    Article  Google Scholar 

  • Connell JH (1985) The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. J Exp Mar Biol Ecol 93:11–45

    Article  Google Scholar 

  • Crook ED, Cooper H, Potts DC et al (2013) Impacts of food availability and pCO2 on planulation, juvenile survival, and calcification of the azooxanthellare sleractinian coral Balanophyllia elegans. Biogeosciences 10:7599–7608

    Article  Google Scholar 

  • Cumbo VR, Fan TY, Edmunds PJ (2012) Physiological development of brooded larvae from two pocilloporid corals in Taiwan. Mar Biol 159:2853–2866

    Article  Google Scholar 

  • Cumbo VR, Fan TY, Edmunds PJ (2013a) Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. J Exp Mar Biol Ecol 439:100–107

    Article  Google Scholar 

  • Cumbo VR, Edmunds PJ, Wall CB et al (2013b) Brooded coral larvae differ in their response to high temperature and elevated pCO2 depending on the day of release. Mar Biol 160:2903–2917

    Article  CAS  Google Scholar 

  • de Graaf M, Geertjes GJ, Videler JJ (1999) Observations on spawning of Scleractinian corals and other invertebrates on the reefs of Bonaire (Netherlands Antilles, Caribbean). Bull Mar Sci 64:189–194

    Google Scholar 

  • de Putron SJ (2003) The reproductive ecology of two corals and one gorgonian from sub-tropical Bermuda. Dissertation, Swansea University

    Google Scholar 

  • de Putron SJ, Smith SR (2011) Planula release and reproductive seasonality of the scleractinian coral Porites astreoides in Bermuda, a high-latitude reef. Bull Mar Sci 87:75–90

    Article  Google Scholar 

  • de Putron SJ, McCorkle DC, Cohen AL et al (2011) The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. Coral Reefs 30:321–328

    Article  Google Scholar 

  • de Putron SJ, Lawson JM, White K et al (in review) Variation in larval properties of the Atlantic brooding coral Porites astreoides within and between different reef sites in Bermuda. Coral Reefs

    Google Scholar 

  • Doropoulos C, Diaz-Pulido G (2013) High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar Ecol Prog Ser 475:93–99

    Article  Google Scholar 

  • Drenkard E, Cohen AL, McCorkle DC et al (2013) Calcification by juvenile corals under heterotrophy and elevated CO2. Coral Reefs 32:727–735

    Article  Google Scholar 

  • Duerden JE (1902) Aggregated colonies in madreporarian corals. Am Nat 36:461–471

    Article  Google Scholar 

  • Dufault AM, Cumbo VR, Fan TY et al (2012) Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proc R Soc Lond (Biol) 279:2951–2958

    Article  CAS  Google Scholar 

  • Dufault AM, Ninokawa A, Bramanti L et al (2013) The role of light in mediating the effects of ocean acidification on coral calcification. J Exp Biol 216:1570–1577

    Article  CAS  PubMed  Google Scholar 

  • Edmunds PJ (2004) Juvenile coral population dynamics track rising seawater temperature on a Caribbean reef. Mar Ecol Prog Ser 269:111–119

    Article  Google Scholar 

  • Edmunds PJ (2007) Evidence for a decadal-scale decline in the growth rates of juvenile scleractinian corals. Mar Ecol Prog Ser 341:1–13

    Article  Google Scholar 

  • Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar Biol 139:981–989

    Article  Google Scholar 

  • Edmunds PJ, Cumbo VR, Fan TY (2011) Effects of temperature on the respiration of brooded larvae from tropical reef corals. J Exp Biol 214:2783–2790

    Article  PubMed  Google Scholar 

  • Erez J, Reynaud S, Silverman J et al (2011) Coral calcification under ocean acidification and global climate change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Heidelberg, pp 151–176

    Chapter  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S et al (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Fadlallah YH (1983) Sexual reproduction, development and larval biology in scleractinian corals. Coral Reefs 2:129–150

    Article  Google Scholar 

  • Fan TY, Li JJ, Ie SX et al (2002) Lunar periodicity of larval release by pocilloporid corals in southern Taiwan. Zool Stud 41:288–294

    Google Scholar 

  • Fan TY, Lin KH, Kuo FW et al (2006) Diel patterns of larval release by five brooding scleractinian corals. Mar Ecol Prog Ser 321:133–142

    Article  Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  CAS  PubMed  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Glassom D, Zakai D, Chadwick-Furman NE (2004) Coral recruitment: a spatio-temporal analysis along the coastline of Eilat, northern Red Sea. Mar Biol 144:641–651

    Article  Google Scholar 

  • Glassom D, Celleirs L, Schleyer MH (2006) Coral recruitment patterns at Sodwana Bay, South Africa. Coral Reefs 25:485–492

    Article  Google Scholar 

  • Gleason DF, Hofmann DK (2011) Coral larvae: from gametes to recruits. J Exp Mar Biol Ecol 408:42–57

    Article  Google Scholar 

  • Gleason DF, Edmunds PJ, Gates RD (2006) Ultraviolet radiation effects on the behavior and recruitment of larvae from the reef coral Porites astreoides. Mar Biol 148:503–512

    Article  Google Scholar 

  • Golbuu Y, Richmond RH (2007) Substratum preferences in planula larvae of two species of scleractinian corals, Goniastrea retiformis and Stylaraea punctata. Mar Biol 152:639–644

    Article  Google Scholar 

  • Goodbody-Gringley G (2010) Diel planualtion by the brooding coral Favia fragum (Esper). J Exp Mar Biol Ecol 389:70–74

    Article  Google Scholar 

  • Goodbody-Gringley G, De Putron S (2009) Patterns of planulation by the brooding coral Favia fragum (Esper) in Bermuda. Coral Reefs 28:959–963

    Article  Google Scholar 

  • Goodbody-Gringley G, Vollmer SV, Woolllacott RM et al (2010) Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Mar Biol 157:2591–2602

    Article  Google Scholar 

  • Goodbody-Gringley G, Woolllacott RM, Giribet G (2012) Population structure and connectivity of the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1766). Mar Ecol Evol Persp 33:31–48

    Google Scholar 

  • Gorbunov MY, Falkowski PG (2002) Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol Oceanogr 47:309–315

    Article  Google Scholar 

  • Green DH, Edmunds PJ, Carpenter RC (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359:1–10

    Article  Google Scholar 

  • Guest JR, Baird AH, Goh BPL et al (2005) Reproductive seasonality in an equatorial assemblage of scleractinian corals. Coral Reefs 24:112–116

    Article  Google Scholar 

  • Hadfield MG, Paul VJ (2001) Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. In: McClintock J, Baker B (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 431–462

    Chapter  Google Scholar 

  • Hagman DK, Gittings SR, Vize PD (1998) Fertilization in broadcast-spawning corals of the Flower Garden Banks National Marine Sanctuary. Gulf Mex Sci 16:180–187

    Google Scholar 

  • Harriott VJ (1983) Reproductive seasonality, settlement, and post-settlement mortality of Pocillopora damicornis (Linnaeus), at Lizard Island, Great Barrier Reef. Coral Reefs 2:151–157

    Article  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Stambler N (ed) Coral reefs: an ecosystem in transition. Springer Science and Business Media BV, New York, pp 59–85

    Chapter  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world. Elsevier Science, Amsterdam, pp 133–207

    Google Scholar 

  • Harrison PL, Babcock RC, Bull GD et al (1984) Mass spawning in tropical reef corals. Science 223:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC et al (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    Article  PubMed  Google Scholar 

  • Isomura N, Nishihira M (2001) Size variation of planulae and its effects of the lifetime of planulae in three pocilloporid corals. Coral Reefs 20:309–315

    Article  Google Scholar 

  • Johnson KG (1992) Synchronous planulation of Manicina areolata (scleractinia) with lunar periodicity. Mar Ecol Prog Ser 87:265–273

    Article  Google Scholar 

  • Jokiel PL, Guinther EB (1978) Effects of temperature on reproduction in the hermatypic coral Pocillopora damicornis. Bull Mar Sci 28:786–789

    Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB et al (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D et al (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  PubMed  Google Scholar 

  • Knowlton N, Jackson JBC (1993) Inbreeding and outbreeding in marine invertebrates. In: Thornhill NW (ed) Natural history of inbreeding and outbreeding. University Press, Chicago

    Google Scholar 

  • Kruger A, Schleyer MH (1998) Sexual reproduction in the coral Pocillopora verrucosa (Cnidaria: Scleractinia) in KwaZulu-Natal, South Africa. Mar Biol 132:703–710

    Article  Google Scholar 

  • Kuffner IB, Paul VJ (2004) Effects of the benthic cyanobacterium Lyngbya majuscula on the larval settlement of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23:455–458

    Article  Google Scholar 

  • Kuffner IB, Walters LJ, Becerro MA et al (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–117

    Article  Google Scholar 

  • Levitan DR, Boudreau W, Jara J et al (2014) Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar Ecol Prog Ser 515:1–10

    Article  Google Scholar 

  • Levy O, Appelbaum L, Leggat W et al (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–470

    Article  CAS  PubMed  Google Scholar 

  • Lewis JB (1974) The settlement behavior of planulae larvae of the hermatypic coral Favia fragum (Esper). J Exp Mar Biol Ecol 15:165–172

    Article  Google Scholar 

  • Lin CH, Soong K, Fan TY (2013) Hourglass mechanism with temperature compensation in the diel periodicity of planulation of the coral Seriatopora hystrix. PLoS One 8:e64584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall DJ, Keough MJ (2008) The evolutionary ecology of offspring size in marine invertebrates. Adv Mar Biol 53:1–60

    Article  Google Scholar 

  • Mason BM, Cohen JH (2012) Long-wavelength photosensitivity in coral planula larvae. Biol Bull 222:88–92

    PubMed  Google Scholar 

  • Mason BM, Beard M, Miller MW (2011) Coral larvae settle at a higher frequency on red surfaces. Coral Reefs 30:667–676

    Article  Google Scholar 

  • McClanahan TR, Weil E, Cortes J et al (2009) Consequences of coral bleaching for sessile reef organisms. In: Van Oppen MJH, Lough JM (eds) Coral bleaching. Springer, Berlin, pp 121–138

    Chapter  Google Scholar 

  • McGuire MP (1998) Timing of larval release by Porites astreoides in the northern Florida keys. Coral Reefs 17:369–375

    Article  Google Scholar 

  • Mendes JM, Woodley JD (2002) Timing of reproduction in Montastraea annularis: relationship to environmental variables. Mar Ecol Prog Ser 227:241–251

    Article  Google Scholar 

  • Morgan SG (1995) The timing of larval release. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton, pp 157–191

    Google Scholar 

  • Morse DE, Morse ANC (1991) Enzymatic characterization of the morphogen recognized by Agaricia humilis (Scleractinian Coral) larvae. Biol Bull 181:104–122

    Article  Google Scholar 

  • Morse DE, Morse ANC, Raimondi PT et al (1994) Morphogen-based chemical flypaper for Agaricia humilis coral larvae. Biol Bull 186:172–181

    Article  CAS  Google Scholar 

  • Mundy CN, Babcock RC (1998) Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement? J Exp Mar Biol Ecol 223:235–255

    Article  Google Scholar 

  • Negri AP, Marshall PA, Heyward AJ (2007) Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26:759–763

    Article  Google Scholar 

  • Neves EG, da Silveira FL (2003) Release of planula larvae, settlement and development of Siderastrea stellata Verrill, 1868 (Anthozoa, Scleractinia). Hydrobiologia 501:139–147

    Article  Google Scholar 

  • Nozawa Y, Harrison PL (2005) Temporal settlement patterns of larvae of the broadcast spawning reef coral Favites chinensis and the broadcast spawning and brooding reef coral Goniastrea aspera from Okinawa, Japan. Coral Reefs 24:274–282

    Article  Google Scholar 

  • Nozawa Y, Okubo N (2011) Survival dynamics of reef coral larvae with special consideration of larval size and the genus Acropora. Biol Bull 220:15–22

    PubMed  Google Scholar 

  • Nugues MM, Szmant AM (2006) Coral settlement onto Halimeda opuntia: a fatal attraction to an ephemeral substrate? Coral Reefs 25:585–591

    Article  Google Scholar 

  • Olsen K, Ritson-Williams R, Ochrietor JD et al (2013) Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar Biol 160:2609–2618

    Article  CAS  Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Annu Rev 30:273–335

    Google Scholar 

  • Penland L, Kloulechad J, Idip D et al (2004) Coral spawning in the western Pacific Ocean is related to solar radiation: evidence of multiple spawning events in Palau. Coral Reefs 23:133–140

    Article  Google Scholar 

  • Peterson D, Van Moorsel GWNM (2005) Pre-planular external development in the brooding coral Agaricia humilis. Mar Ecol Prog Ser 289:307–310

    Google Scholar 

  • Policansky D (1982) Sex change in plants and animals. Ann Rev Ecol Syst 13:471–495

    Article  Google Scholar 

  • Putman HM, Edmunds PJ, Fan TY (2008) Effect of temperature on the settlement choice and photophysiology of larvae from the reef coral Stylophora pistillata. Biol Bull 215:135–142

    Article  Google Scholar 

  • Putman HM, Edmunds PJ, Fan TY (2010) Effect of a fluctuating thermal regime on adult and larval reef corals. Invert Biol 129:199–209

    Article  Google Scholar 

  • Randall CJ, Szmant AM (2009) Elevated temperature reduces survivorship and settlement of the learve of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28:537–545

    Article  Google Scholar 

  • Richmond RH (1987) Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533

    Article  Google Scholar 

  • Richmond RH (1988) Competency and dispersal potential of planula larvae of a spawning versus a brooding coral. In: Proc 6th internat coral reef symp, Australia, pp 827–831

    Google Scholar 

  • Richmond RH, Jokiel PL (1984) Lunar periodicity in larva release in the reef coral Pocillopora damicornis at Enewetak and Hawaii. Bull Mar Sci 34:280–287

    Google Scholar 

  • Ritson-Williams R, Arnold S, Fogarty N et al (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci 38:437–457

    Article  Google Scholar 

  • Ritson-Williams R, Paul VJ, Arnold S et al (2010) Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29:71–81

    Article  Google Scholar 

  • Ritson-Williams R, Arnold S, Paul VJ et al (2014) Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33:59–66

    Article  Google Scholar 

  • Rylaarsdam K (1983) Life histories and abundance patterns of colonial corals on Jamiacan reefs. Mar Ecol Prog Ser 13:249–260

    Article  Google Scholar 

  • Sherman C (2008) Mating system variation in the hermaphroditic brooding coral, Seriatopora hytrix. Heredity 100:296–303

    Article  CAS  PubMed  Google Scholar 

  • Smith FGW (1971) Atlantic reef corals: a handbook of the common reef and shallow-water corals of Bermuda, the Bahamas, Florida, the West Indies, and Brazil. University of Miami Press, Coral Gables

    Google Scholar 

  • Smith SR (1992) Patterns of coral recruitment and post-settlement mortality on Bermuda’s reefs: comparisons to Caribbean and Pacific reefs. Am Zool 32:663–673

    Article  Google Scholar 

  • Soong K (1991) Sexual reproductive patterns of shallow-water reef corals in Panama. Bull Mar Sci 49:832–846

    Google Scholar 

  • Strathmann RR (1986) What controls the type of larval development? Summary statement for the evolution session. Bull Mar Sci 39:616–622

    Google Scholar 

  • Sweeney AM, Boch CA, Johnson S et al (2011) Twilight spectral dynamics and the coral reef invertebrate spawning response. J Exp Biol 214:770–777

    Article  PubMed  Google Scholar 

  • Szmant AM (1986) Reproductive ecology of Caribbean coral reefs. Coral Reefs 5:43–53

    Article  Google Scholar 

  • Szmant-Froelich A, Reutter M, Riggs L (1985) Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull Mar Sci 37:880–892

    Google Scholar 

  • Tanner JE (1996) Seasonality and lunar periodicity in the reproduction of pocilloporid corals. Coral Reefs 15:59–66

    Article  Google Scholar 

  • Van Moorsel GWNM (1983) Reproductive strategies in two closely related stony corals (Agaricia, Scleractinia). Mar Ecol Prog Ser 13:273–283

    Article  Google Scholar 

  • van Woesik R, Lacharmoise F, Koksal S (2006) Annual cycles of solar insulation predict spawning times of Caribbean corals. Ecol Lett 9:390–398

    Article  PubMed  Google Scholar 

  • Vaughan TW (1919) Corals and the formation of coral reefs. GPO, Washington

    Google Scholar 

  • Vermeij MJA, Sampayo E, Broker K et al (2003) Variation in planulae release of closely related coral species. Mar Ecol Prog Ser 247:75–84

    Article  Google Scholar 

  • Vermeij MJA, Sampayo E, Broker K et al (2004) The reproductive biology of closely related coral species: gametogenesis in Madracis from the southern Caribbean. Coral Reefs 23:206–214

    Article  Google Scholar 

  • Villanueva RD, Yap HT, Montano MNE (2008) Timing of planulation by pocilloporid corals in the northwestern Philippines. Mar Ecol Prog Ser 370:111–119

    Article  Google Scholar 

  • Webster NS, Smith LD, Heyward A et al (2004) Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl Environ Microbiol 70:1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis B, Babcock RC, Harrison PL et al (1985) Patterns in the mass spawning of corals in the Great Barrier Reef from 1981 to 1984. In: Proc 5th internat coral reef symposium, vol 4. pp 343–348

    Google Scholar 

  • Wilson HV (1888) On the development of Manicina areolata. J Morphol 2:191–252

    Article  Google Scholar 

  • Yeoh SR, Dai CF (2010) The productin of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar Biol 157:351–359

    Article  Google Scholar 

  • Yonge CM (1931) A year on the Great Barrier Reef. Putnam, London

    Google Scholar 

  • Zakai D, Dubinsky Z, Avishai A et al (2006) Lunar periodicity of planulae release in the reef-building coral Stylophora pistillata. Mar Ecol Prog Ser 311:93–102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen Goodbody-Gringley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goodbody-Gringley, G., de Putron, S.J. (2016). Brooding Corals: Planulation Patterns, Larval Behavior, and Recruitment Dynamics in the Face of Environmental Change. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_18

Download citation

Publish with us

Policies and ethics