Advertisement

Influences of Coral Intra-skeletal Organic Matrix on Calcium Carbonate Precipitation

  • Michela Reggi
  • Simona Fermani
  • Oren Levy
  • Zvy Dubinsky
  • Stefano Goffredo
  • Giuseppe Falini
Chapter

Abstract

Corals are among the most important calcium carbonate mineralizers and form the main structures of the reefs, which provide an important socio-economical support. Despite this, and the fact the is quite generally accepted that coral mineralization is a biological controlled process, few studied have so far addressed the role of the intra-skeletal organic matrix in the calcification process. This chapter makes a scientific path on what is known on the biological control of coral mineralization describing the more relevant studies. The sections are sequenced with the aim to guide the readers to be conscious of the importance of the organic matrix in the mineralization process that is finally illustrated through a series of experiments in vivo and in vitro. Accordingly the chapter presents an overview on coral biomineralization, anatomy and physiology, skeleton microsctructure, tissue-skeleton, minor element distribution, organic matrix, biomineralization proteins and finally calcium carbonate precipitation in the presence of coral organic matrix.

Keywords

Corals Organic matrix Calcium carbonate Crystallization Biomineralization 

Notes

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant.

Agreement No. [249930-CoralWarm: Corals and global warming: the Mediterranean versus the Red Sea; www.CoralWarm.eu]. We thank Gianni Neto for the underwater pictures in Fig. 13.6.

References

  1. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals – stereochemical requirements in biomineralization. Proc Natl Acad Sci U S A 82(12):4110–4114PubMedPubMedCentralCrossRefGoogle Scholar
  2. Addadi L, Moradian J, Shay E et al (1987) A chemical-model for the cooperation of sulfates and carboxylates in calcite crystal nucleation – relevance to biomineralization. Proc Natl Acad Sci U S A 84(9):2732–2736PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adkins JF, Boyle EA, Curry WB et al (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67(6):1129–1143CrossRefGoogle Scholar
  4. Aizenberg J, Albeck S, Weiner S et al (1994) Crystal protein interactions studied by overgrowth of calcite on biogenic skeletal elements. J Cryst Growth 142(1–2):156–164CrossRefGoogle Scholar
  5. Albeck S, Aizenberg J, Addadi L et al (1993) Interactions of various skeletal intracrystalline components with calcite crystals. J Am Chem Soc 115(25):11691–11697CrossRefGoogle Scholar
  6. Allemand D, Ferrier-Pages C, Furla P et al (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3(6–7):453–467CrossRefGoogle Scholar
  7. Allison N (1996) Comparative determinations of trace and minor elements in coral aragonite by ion microprobe analysis, with preliminary results from Phuket, southern Thailand. Geochim Cosmochim Acta 60(18):3457–3470CrossRefGoogle Scholar
  8. Allison N, Finch AA, Newville M et al (2005) Strontium in coral aragonite: 3. Sr coordination and geochemistry in relation to skeletal architecture. Geochim Cosmochim Acta 69(15):3801–3811CrossRefGoogle Scholar
  9. Barnes DJ (1985) The effect of photosynthetic and respiratory inhibitors upon calcification in the staghorn coral, Acropora formosa. In: Gabrie C, Harmelin M (eds) Proceedings of the 5th International Coral Reef Congress, TahitiGoogle Scholar
  10. Bedouet L, Schuller MJ, Marin F et al (2001) Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comp Biochem Phys B 128(3):389–400CrossRefGoogle Scholar
  11. Benayahu Y, Jeng MS, Perkol-Finkel S et al (2004) Soft corals (Octocorallia : Alcyonacea) from southern Taiwan. II. Species diversity and distributional patterns. Zool Stud 43(3):548–560Google Scholar
  12. Benzoni F, Stefani F, Stolarski J et al (2007) Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contrib Zool 76(1):35–54Google Scholar
  13. Blamart D, Rollion-Bard C, Meibom A et al (2007) Correlation of boron isotopic composition with ultrastructure in the deep- sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. Geochem Geophys Geosyst 8(12):Q12001–Q12011CrossRefGoogle Scholar
  14. Brown B, Hewit R, Le Tissier M (1983) The nature and construction of skeletal spines in Pocillopora damicornis (Linnaeus). Coral Reefs 2(2):81–89CrossRefGoogle Scholar
  15. Bryan WH, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the Hexacorals. University of Queensland Press, BrisbaneGoogle Scholar
  16. Chalker B, Carr K, Gil E (1985) Measurement of primary production and calcification in situ on coral reefs using electrode techniques. In: Gabrie C, Harmelin M (eds) Proceedings of the 5th International Coral Reef Congress, TahitiGoogle Scholar
  17. Clode PL, Marshall AT (2002) Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue Cell 34(3):187–198PubMedCrossRefGoogle Scholar
  18. Clode PL, Marshall AT (2003) Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220(3–4):153–161PubMedCrossRefGoogle Scholar
  19. Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. In: Dove PM, De Yereo JJ, Weiner S (eds) Biomineralization. Reviews in mineralogy and geochemistry, vol 54. Mineralogical Society of America, Chantilly, pp 151–187Google Scholar
  20. Cohen AL, Sohn RA (2004) Tidal modulation of Sr/Ca ratios in a Pacific reef coral. Geophys Res Lett 31(16):L16310CrossRefGoogle Scholar
  21. Cohen AL, Layne GD, Hart SR et al (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16(1):20–26CrossRefGoogle Scholar
  22. Cohen AL, Owens KE, Layne GD et al (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296(5566):331–333PubMedCrossRefGoogle Scholar
  23. Cohen AL, Gaetani GA, Lundalv T et al (2006) Compositional variability in a cold-water scleractinian, Lophelia pertusa: new insights into “vital effects”. Geochem Geophys Geosyst 7(12):Q12004CrossRefGoogle Scholar
  24. Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some recent scleractinian corals. Paleontol Z 72(3–4):257–269CrossRefGoogle Scholar
  25. Cuif JP, Dauphin Y (2005a) The environment recording unit in coral skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2(1):61–73CrossRefGoogle Scholar
  26. Cuif JP, Dauphin Y (2005b) The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J Struct Biol 150(3):319–331PubMedCrossRefGoogle Scholar
  27. Cuif JP, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some resent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88(3):582–592CrossRefGoogle Scholar
  28. Cuif JP, Dauphin Y, Doucet J et al (2003a) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67(1):75–83CrossRefGoogle Scholar
  29. Cuif JP, Lecointre G, Perrin C et al (2003b) Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool Scr 32(5):459–473CrossRefGoogle Scholar
  30. Dana JD (1846) Structure and classification of zoophytes. United States exploring expedition 1838–1842. Lea and Blanchard, PhiladelphiaGoogle Scholar
  31. Dauphin Y, Cuif JP, Massard P (2006) Persistent organic components in heated coral aragonitic skeletons-Implications for palaeoenvironmental reconstructions. Chem Geol 231(1–2):26–37CrossRefGoogle Scholar
  32. Debreuil J, Tambutte E, Zoccola D et al (2012) Molecular cloning and characterization of first organic matrix protoein from sclerites of red coral, Corallium rubrum. J Biol Chem 287(23):19367–19376PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dodge RE, Vaisnys JR (1975) Hermatypic coral growth banding as environmental recorder. Nature 258(5537):706–708CrossRefGoogle Scholar
  34. Enmar R, Stein M, Bar-Matthews M et al (2000) Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochim Cosmochim Acta 64(18):3123–3132CrossRefGoogle Scholar
  35. Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50(4):1025–1032CrossRefGoogle Scholar
  36. Falini G, Fermani S (2013) The strategic role of adsorption phenomena in biomineralization. Cryst Res Technol 48(10):864–876CrossRefGoogle Scholar
  37. Falini G, Albeck S, Weiner S et al (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271(5245):67–69CrossRefGoogle Scholar
  38. Falini G, Fermani S, Tosi G et al (2009) Calcium carbonate morphology and structure in the presence of seawater ions and humic acids. Cryst Growth Des 9(5):2065–2072CrossRefGoogle Scholar
  39. Falini G, Reggi M, Fermani S et al (2013) Control of aragonite deposition in colonial corals by intra-skeletal macromolecules. J Struct Biol 183(2):226–238PubMedCrossRefGoogle Scholar
  40. Fallon SJ, McCulloch MT, van Woesik R et al (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172(3–4):221–238CrossRefGoogle Scholar
  41. Fang LS, Chou YC (1992) Concentration of fulvic-acid in the growth bands of hermatypic corals in relation to local precipitation. Coral Reefs 11(4):187–191CrossRefGoogle Scholar
  42. Farre B, Cuif JP, Dauphin Y (2010) Occurrence and diversity of lipids in modern coral skeletons. Zoology 113(4):250–257PubMedCrossRefGoogle Scholar
  43. Foster A (1979) Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J Exp Mar Biol Ecol 39(1):25–54CrossRefGoogle Scholar
  44. Fukuda I, Ooki S, Fujita T et al (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Co 304(1):11–17CrossRefGoogle Scholar
  45. Furedimilhofer H, Moradian-Oldak J, Weiner S et al (1994) Interactions of matrix proteins from mineralized tissues with octacalcium phosphate. Connect Tissue Res 30(4):251–264CrossRefGoogle Scholar
  46. Gabitov RI, Cohen AL, Gaetani GA et al (2006) The impact of crystal growth rate on element ratios in aragonite: an experimental approach to understanding vital effects. Geochim Cosmochim Acta 70(18):A187–A220CrossRefGoogle Scholar
  47. Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim Cosmochim Acta 70(18):4617–4634CrossRefGoogle Scholar
  48. Gagnon AC, Adkins JF, Fernandez DP et al (2007) Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth Planet Sci Lett 261(1–2):280–295CrossRefGoogle Scholar
  49. Garland T, Kelly SA (2006) Phenotypic plasticity and experimental evolution. J Exp Biol 209(12):2344–2361PubMedCrossRefGoogle Scholar
  50. Gautret P, Cuif JP, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36(1):189–194CrossRefGoogle Scholar
  51. Gilis M, Meibom A, Domart-Coulon I et al (2014) Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis. J Morphol 275(12):1349–1365PubMedCrossRefGoogle Scholar
  52. Goffredo S, Vergni P, Reggi M et al (2011) The skeletal organic matrix from mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation. PLoS One 6(7):12CrossRefGoogle Scholar
  53. Goldberg WM (2001a) Desmocytes in the calicoblastic epithelium of the stony coral Mycetophyllia reesi and their attachment to the skeleton. Tissue Cell 33(4):388–394PubMedCrossRefGoogle Scholar
  54. Goldberg WM (2001b) Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi. Tissue Cell 33(4):376–387PubMedCrossRefGoogle Scholar
  55. Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116(1):59–75CrossRefGoogle Scholar
  56. Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60(16):3075–3084CrossRefGoogle Scholar
  57. Helman Y, Natale F, Sherrell RM et al (2008) Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc Natl Acad Sci U S A 105(1):54–58PubMedCrossRefGoogle Scholar
  58. Holcomb M, Cohen AL, Gabitov RI et al (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73(14):4166–4179CrossRefGoogle Scholar
  59. Inoue M, Suzuki A, Nohara M et al (2007) Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperatures. Geophys Res Lett 34(12):L12611CrossRefGoogle Scholar
  60. Jacques TG, Pilson MEQ (1980) Experimental ecology of the temperate scleractinian coral Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol 60(2–3):167–178CrossRefGoogle Scholar
  61. Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae. Mar Biol 76(2):135–148CrossRefGoogle Scholar
  62. Johnston IS (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cytol 67:171–214CrossRefGoogle Scholar
  63. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New YorkGoogle Scholar
  64. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New YorkGoogle Scholar
  65. Mass T, Drake JL, Haramaty L et al (2012) Aragonite precipitation by “proto-polyps” in coral cell cultures. PLoS One 7(4):e35049PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mass T, Drake JL, Haramaty L et al (2013) Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr Biol 23(12):1126–1131PubMedCrossRefGoogle Scholar
  67. Matthews BJH, Jones AC, Theodorou NK et al (1996) Excitation-emission-matrix fleorescence spectroscopy applied to humic acid bands in coral reefs. Mar Chem 55(3–4):317–332CrossRefGoogle Scholar
  68. Meibom A, Cuif JP, Hillion FO et al (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31(23):L23306CrossRefGoogle Scholar
  69. Meibom A, Yurimoto H, Cuif JP et al (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophys Res Lett 33(11):L11608CrossRefGoogle Scholar
  70. Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundsch 85(3):496–504CrossRefGoogle Scholar
  71. Milne-Edwards H, Haime J (1857) Histoire naturelle des coralliaires, ou polypes proprement dits. Roret, ParisCrossRefGoogle Scholar
  72. Moradian-Oldak J, Frolow F, Addadi L et al (1992) Interactions between acidic matrix macromolecules and calcium-phosphate ester crystals – relevance to carbonate apatite formation in biomineralization. Proc R Soc B 247(1318):47–55PubMedCrossRefGoogle Scholar
  73. Motai S, Nagai T, Sowa K et al (2012) Needle-like grains across growth lines in the coral skeleton of Porites lobata. J Struct Biol 180(3):389–393PubMedCrossRefGoogle Scholar
  74. Muscatine L, Tambutte E, Allemand D (1997) Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 16(4):205–213CrossRefGoogle Scholar
  75. Perrin C (2003) Compositional heterogeneity and microstructural diversity of coral skeletons: implications for taxonomy and control on early diagenesis. Coral Reefs 22(2):109–120CrossRefGoogle Scholar
  76. Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963PubMedCrossRefGoogle Scholar
  77. Puverel S, Tambutte E, Zoccola D et al (2005a) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24(1):149–156CrossRefGoogle Scholar
  78. Puverel S, Tambutte E, Pererra-Mouries L et al (2005b) Soluble organic matrix of two scleractinian corals: partial and comparative analysis. Comp Biochem Phys B 141(4):480–487CrossRefGoogle Scholar
  79. Puverel S, Houlbreque F, Tambutte E et al (2007) Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata. Comp Biochem Phys A 147(4):850–856CrossRefGoogle Scholar
  80. Ramos-Silva P, Kaandorp J, Huisman L et al (2013) The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol Biol Evol 30(9):2099–2112PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ramos-Silva P, Kaandorp J, Herbst F et al (2014) The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization. Plos One 9(6):e97454PubMedPubMedCentralCrossRefGoogle Scholar
  82. Raz-Bahat M, Erez J, Rinkevich B (2006) In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Cell Tissue Res 325(2):361–368PubMedCrossRefGoogle Scholar
  83. Reggi M, Fermani S, Landi V et al (2014) Biomineralization in mediterranean corals: the role of the intraskeletal organic matrix. Cryst Growth Des 14(9):4310–4320CrossRefGoogle Scholar
  84. Sancho-Tomas M, Fermani S, Goffredo S et al (2014) Exploring coral biomineralization in gelling environments by means of a counter diffusion system. Cryst Eng Comm 16(7):1257–1266CrossRefGoogle Scholar
  85. Sondi I, Salopek-Sondi B, Škapin SD et al (2011) Colloid-chemical processes in the growth and design of the bio-inorganic aragonite structure in the scleractinian coral Cladocora caespitosa. J Colloid Interf Sci 354(1):181–189CrossRefGoogle Scholar
  86. Song RQ, Cölfen H, Xu AW et al (2009) Polyelectrolyte-directed nanoparticle aggregation: systematic morphogenesis of calcium carbonate by nonclassical crystallization. ACS Nano 3(7):1966–1978PubMedCrossRefGoogle Scholar
  87. Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press, BerkeleyGoogle Scholar
  88. Tambutte E, Allemand D, Zoccola D et al (2007a) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26(3):517–529CrossRefGoogle Scholar
  89. Tambutte S, Tambutte E, Zoccola D et al (2007b) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151(1):71–83CrossRefGoogle Scholar
  90. Tambutte E, Tambutte S, Segonds N et al (2012) Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification. Proc R Soc B Biol 279(1726):19–27CrossRefGoogle Scholar
  91. van Oppen MJH, McDonald BJ, Willis B et al (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18(7):1315–1329PubMedCrossRefGoogle Scholar
  92. Vandermeulen JH (1975) Studies on reef corals. III. Fine structural changes of calicoblast cells in Pocillopora damicornis during settling and calcification. Mar Biol 31(1):69–77CrossRefGoogle Scholar
  93. Vaughan TW, Wells JW (1943) Revision of the suborders families, and genera of the scleractinia. Geol Soc Am Spec Pap 44:1–394Google Scholar
  94. Veron JEN (1986) Corals of Australia and the Indo-Pacific. University of Hawaii Press, HonoluluGoogle Scholar
  95. Volpi N (2002) Influence of charge density, sulfate group position and molecular mass on adsorption of chondroitin sulfate onto coral. Biomaterials 23(14):3015–3022PubMedCrossRefGoogle Scholar
  96. Wainwright SA (1964) Studies of the mineral phase of coral skeleton. Exp Cell Res 34(2):213–230CrossRefGoogle Scholar
  97. Watanabe T, Fukuda I, China K et al (2003) Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Phys B 136(4):767–774CrossRefGoogle Scholar
  98. Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60(24):5013–5020CrossRefGoogle Scholar
  99. Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Mineral 80(11–12):1179–1187CrossRefGoogle Scholar
  100. Weiner S, Dove PM (2003) An overview on biomineralization processes and the problem of the vital effect. In: Dove PM, De Yereo JJ, Weiner S (eds) Biomineralization. Review in mineralogy and geochemistry, vol 54. Mineralogical Society of America, Chantilly, pp 1–24Google Scholar
  101. Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology. Part F Coelenterata. Geological Society of America & University of Kansas Press, Lawrence, pp 328–440Google Scholar
  102. Willis BL (1985) Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. In: Gabrie C, Harmelin M (eds) Proceedings of the 5th International Coral Reef Congress, TahitiGoogle Scholar
  103. Zoccola D, Tambutte E, Senegas-Balas F et al (1999) Cloning of a calcium channel alpha 1 subunit from the reef-building coral, Stylophora pistillata. Gene 227(2):157–167PubMedCrossRefGoogle Scholar
  104. Zoccola D, Tambutte E, Kulhanek E et al (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochem Bioph Acta-Biomembr 1663(1–2):117–126CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michela Reggi
    • 1
  • Simona Fermani
    • 1
  • Oren Levy
    • 2
  • Zvy Dubinsky
    • 2
  • Stefano Goffredo
    • 3
  • Giuseppe Falini
    • 1
  1. 1.Department of Chemistry “Giacomo Ciamician”Alma Mater Studiorum – University of BolognaBolognaItaly
  2. 2.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael
  3. 3.Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly

Personalised recommendations