Advertisement

Behavior and Path Planning for the Coalition of Cognitive Robots in Smart Relocation Tasks

  • Aleksandr I. PanovEmail author
  • Konstantin Yakovlev
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 447)

Abstract

In this paper we outline the approach of solving special type of navigation tasks for robotic systems, when a coalition of robots (agents) acts in the 2D environment, which can be modified by the actions, and share the same goal location. The latter is originally unreachable for some members of the coalition, but the common task still can be accomplished as the agents can assist each other (e.g., by modifying the environment). We call such tasks smart relocation tasks (as they cannot be solved by pure path planning methods) and study spatial and behavior interaction of robots while solving them. We use cognitive approach and introduce semiotic knowledge representation—sign world model which underlines behavioral planning methodology. Planning is viewed as a recursive search process in the hierarchical state-space induced by sings with path planning signs residing on the lowest level. Reaching this level triggers path planning which is accomplished by state-of-the-art grid-based planners focused on producing smooth paths (e.g., LIAN) and thus indirectly guarantying feasibility of that paths against agent’s dynamic constraints.

Keywords

Behavior planning Task planning Coalition Path planning Sign world model Semiotic model Knowledge representation LIAN 

Notes

Acknowledgments

The reported study was supported by RFBR, research projects No. 14-07-31194 and No. 15-37-20893.

References

  1. 1.
    Albus, J.S.: 4D/RCS: a reference model architecture for intelligent unmanned ground vehicles. AeroSense 2002. International Society for Optics and Photonics (2002)Google Scholar
  2. 2.
    Yoo, J.-K., Kim, J.-H.: Gaze control-based navigation architecture with a situation-specific preference approach for humanoid robots. IEEE Trans. Mechatron. (2015)Google Scholar
  3. 3.
    Emelyanov, S., et al.: Multilayer cognitive architecture for UAV control. Cogn. Syst. Res. 34 (2015)Google Scholar
  4. 4.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier (2004)Google Scholar
  5. 5.
    Ghallab, M., et al.: PDDL-the planning domain definition language (1998)Google Scholar
  6. 6.
    Fox, M., Long, D.: PDDL2. 1: an extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)zbMATHGoogle Scholar
  7. 7.
    Karlsson, L., et al.: Combining task and path planning for a humanoid two-arm robotic system. In: TAMPRA’12: Proceedings of the 2012 ICAPS Workshop on Combining Task and Motion Planning for Real-World Applications, pp. 13–20 (2012)Google Scholar
  8. 8.
    Abdo, N., Kretzschmar, H., Stachniss, C.: From low-level trajectory demonstrations to symbolic actions for planning. In: TAMPRA’12: Proceedings of the 2012 ICAPS Workshop on Combining Task and Motion Planning for Real-World Applications, pp. 29–36Google Scholar
  9. 9.
    Laird, J.: Extending the soar cognitive architecture. In: Proceedings of the First AGI Conference, pp. 224–235 (2008)Google Scholar
  10. 10.
    Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)Google Scholar
  11. 11.
    Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco (1998)zbMATHGoogle Scholar
  12. 12.
    Langley, P.: Learning to sense selectively in physical domains. In: Proceedings of the First International Conference on Autonomous Agents, Marina del Rey, USA, pp. 217–226 (1997)Google Scholar
  13. 13.
    Langley, P.: Cognitive architectures and general intelligent systems. AI Mag. 27, 33–44 (2006)Google Scholar
  14. 14.
    Sun, R., Bookman, L.: Computational Architectures Integrating Neural and Symbolic Processes, p. 496. Kluwer Academic Publishers, Boston (1994)Google Scholar
  15. 15.
    Sun, R.: The CLARION Cognitive Architecture: Extending Cognitive Modeling to Social Simulation, p. 434. Cambridge University Press, New York (2006)Google Scholar
  16. 16.
    Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971). http://doi.org/10.1016/0004-3702(71)90010-5
  17. 17.
    Blum, A.L., Frust, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1–2), 281–300 (1997). doi: 10.1016/S0004-3702(96)00047-1 CrossRefzbMATHGoogle Scholar
  18. 18.
    Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)zbMATHGoogle Scholar
  19. 19.
    Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006). doi: 10.1613/jair.1705 CrossRefzbMATHGoogle Scholar
  20. 20.
    Richter, S., Westphal, M.: The LAMA planner: guiding cost-based anytime planning with landmarks. J. Artif. Intell. Res. 39, 127–177 (2010). doi: 10.1613/jair.2972 zbMATHGoogle Scholar
  21. 21.
    Della Penna, G., Magazzeni, D., Mercorio, F.: A universal planning system for hybrid domains. Appl. Intell. 36(4), 932–959 (2012). doi: 10.1007/s10489-011-0306-z CrossRefGoogle Scholar
  22. 22.
    Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J. Artif. Intell. Res. 27, 235–297 (2006)zbMATHGoogle Scholar
  23. 23.
    Kovacs, D.L.: A multi-agent extension of PDDL3.1. In: Proceedings of the 3rd Workshop on the International Planning Competition (IPC), ICAPS-2012, Atibaia, Brazil, pp. 19–27, 25–29 June 2012Google Scholar
  24. 24.
    Harnad, S.: Symbol Grounding Problem. Physica 42, 335–346 (1990). doi: 10.4249/scholarpedia.2373 Google Scholar
  25. 25.
    Osipov, G.S., Panov, A.I., Chudova, N.V.: Behavior control as a function of consciousness. I. World model and goal setting. J. Comput. Syst. Sci. Int. 53(4), 517–529 (2014). doi: 10.1134/S1064230714040121 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ivanitsky, A.M.: Information synthesis in key parts of the cerebral cortex as the basis of subjective experience. Neurosci. Behav. Physiol. 27(4), 414–426 (1997)CrossRefGoogle Scholar
  27. 27.
    Edelman, G.M.: Neural Darwin-ism: The Theory Of Neuronal Group Selection. Basic Books, New York (1987)Google Scholar
  28. 28.
    Lozano-Prez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  29. 29.
    Bhattacharya, P., Gavrilova, M.L.: Roadmap-based path planning-using the Voronoi diagram for a clearance-based shortest path. Robot. Autom. Mag. IEEE 15(2), 58–66 (2008)CrossRefGoogle Scholar
  30. 30.
    Kallmann, M.: Navigation queries from triangular meshes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 230–241. Springer, Heidelberg (2010)Google Scholar
  31. 31.
    Yap, P.: Grid-based path-finding. In: Co-hen, R., Spencer, B. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2338, pp. 44–55. Springer, Heidelberg (2002)Google Scholar
  32. 32.
    Wooden, D.T.: Graph-based path planning for mobile robots. PhD thesis, Georgia Institute of Technology (2006)Google Scholar
  33. 33.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  34. 34.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  36. 36.
    Likhachev, M., Stentz, A.: R* search. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence. AAAI Press, Menlo Park (2008)Google Scholar
  37. 37.
    Nash, A., Daniel, K., Koenig, S., Felner, A. 2007. Theta*: any-angle path planning on grids. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, No. 2, pp. 1177. AAAI Press, Menlo Park, CalifGoogle Scholar
  38. 38.
    Harabor, D., Grastien, A.: Online graph pruning for pathfinding on grid maps. In: AAAI-11 (2013)Google Scholar
  39. 39.
    Koenig, S., Likhachev, M.: D*Lite. In: Proceedings of the National Conference on Artificial Intelligence AAAI (2000)Google Scholar
  40. 40.
    Kuwata, Y., Karaman, S., Teo, J., Frazzoli, E., How, J.P., Fiore, G.: Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Control Syst. Technol. 17(5), 1105–1118 (2009)CrossRefGoogle Scholar
  41. 41.
    Kim, H., Kim, D., Shin, J.U., Kim, H., Myung, H.: Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Eng. 84, 37–44 (2014)CrossRefGoogle Scholar
  42. 42.
    Yakovlev, K., Baskin, E., Hramoin, I.: Grid-based angle-constrained path planning. In: Proceeding of the 38th German Conference on Artificial Intelligence (KI-2015) (2015)Google Scholar
  43. 43.
    Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: AAAI, pp. 173–178 (2010)Google Scholar
  44. 44.
    Wang, K.-H.C., Botea, A.: Fast and memory-efficient multi-agent pathfinding. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), pp. 380–387 (2008)Google Scholar
  45. 45.
    Silver, D.: AI Program. Wisdom 3, 99–111 (2006)Google Scholar
  46. 46.
    Yakovlev, K., Makarov, D., Baskin, E.: Automatic path planning for an unmanned drone with constrained flight dynamics. Sci. Tech. Inf. Process. 5 (2015)Google Scholar
  47. 47.
    Leontyev, A.N.: The Development of Mind. Erythros Press and Media, Kettering (2009)Google Scholar
  48. 48.
    Vygotsky, L.S.: Thought and Language. MIT Press (1986)Google Scholar
  49. 49.
    Mountcastle, V.B.: Perceptual Neuroscience. The Cerebral Cortex. Harvard University Press, Cambridge (1998)Google Scholar
  50. 50.
    George, D., Hawkins, J.: PLoS Comput. Biol. 5(10), 1–26 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Osipov, G.S., Panov, A.I., Chudova, N.V.: Behavior control as a function of consciousness. II. Synthesis of a behavior plan. J. Comput. Syst. Sci. Int. 54(5) (2015)Google Scholar
  52. 52.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control” of RASMoscowRussia

Personalised recommendations