Advertisement

Application of the Characteristic Objects Method in Supply Chain Management and Logistics

  • Wojciech SałabunEmail author
  • Paweł Ziemba
Chapter
  • 735 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 642)

Abstract

This paper presents a new multi-criteria decision-making method: the Characteristic Objects method. This approach is an alternative for AHP, TOPSIS, ELECTRE or PROMETHEE methods. The paper presents the possibility of using the Characteristic Objects Method (COMET method) in supply chain management (SCM) and Logistics. For this purpose, a brief review of the literature is shown. Then the COMET method is presented in detail. At the end of the paper, a simple problem is solved by using COMET method.

Keywords

Fuzzy set theory Characteristic objects method AHP ELECTRE Supply chain management Logistics TOPSIS MCDA 

References

  1. 1.
    Awasthi, A., Chauhan, S.S., Goyal, S.K.: A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. Math. Comput. Model. 53(1–2), 98–109 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bojkovic, N., Anic, I., Pejcic-Tarle, S.: One solution for cross-country transport-sustainability evaluation using a modified ELECTRE method. Ecol. Econ. 69(5), 1176–1186 (2010)CrossRefGoogle Scholar
  3. 3.
    Chamodrakas, I., Alexopoulou, N., Martakos, D.: Customer evaluation for order acceptance using a novel class of fuzzy methods based on TOPSIS. Expert Syst. Appl. 36(4), 7409–7415 (2009)CrossRefGoogle Scholar
  4. 4.
    Chan, F.T., Kumar, N.: Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 35(4), 417–431 (2007)CrossRefGoogle Scholar
  5. 5.
    Chu, T.-C.: Facility location selection using fuzzy topsis under group decisions. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(6), 687–701Google Scholar
  6. 6.
    Ertgrul, I., Karakasoglu, N.: Comparision of fuzzy AHP and fuzzy TOPSIS mewthods for facility location selection. Int. J. Adv. Manuf. Technol. 39, 783–795 (2008)CrossRefGoogle Scholar
  7. 7.
    Farahani, R.Z., Asgari, N.: Combination of MCDM and covering techniques in a hierarchical model for facility location: a case study. Eur. J. Oper. Res. 176(3), 1839–1858 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kannan, G., Khodaverdi, R., Jafarian, A.: A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 47, 345–354 (2013)CrossRefGoogle Scholar
  9. 9.
    Kawa, A.: Simulation of dynamic supply chain configuration based on software agents and graph theory. In: Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living, pp. 346–349. Springer, Berlin (2009)Google Scholar
  10. 10.
    Kawa, A., Golińska, P.: Supply chain arrangements in recovery network. In: Agent and Multi-Agent Systems: Technologies and Applications, pp. 292–301. Springer, Berlin (2010)Google Scholar
  11. 11.
    Kawa, A., Ratajczak-Mrozek, M.P: Supply chain configuration in high-tech networks. In: Intelligent Information and Database Systems, pp. 459–468. Springer, Berlin (2012)Google Scholar
  12. 12.
    Martín, J.M., Fajardo, W., Blanco, A., Requena, I.: Constructing linguistic versions for the multicriteria decision support systems preference ranking organization method for enrichment evaluation i and ii. Int. J. Intel. Syst. 18, 711–731 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Onut, S., Kara, S.S., Isik, E.: Long term supplier selection using a combined fuzzy MCDM approach: a case study for a telecommunication company. Expert Syst. Appl. 36(2), 3887–3895 (2009)CrossRefGoogle Scholar
  14. 14.
    Piegat, A., Sałabun, W.: Comparative analysis of MCDM methods for assessing the severity of chronic liver disease. Artif. Intel. Soft Comput. LNAI 9119, 228–238 (2015)CrossRefGoogle Scholar
  15. 15.
    Piegat, A., Sałabun, W.: Identification of a multicriteria decision-making model using the characteristic objects method. Appl. Comput. Intel. Soft Comput. (2014)Google Scholar
  16. 16.
    Piegat, A., Sałabun, W.: Nonlinearity of human multi-criteria in decision-making. J. Theor. Appl. Comput. Sci. 6(3), 36–49 (2012)Google Scholar
  17. 17.
    Poh, K.L., Ang, B.W.: Transportation fuels and policy for Singapore: an AHP planning approach. Comput. Ind. Eng. 37(3), 507–525 (1999)Google Scholar
  18. 18.
    Sałabun, W.: Application of the fuzzy multi-criteria decision-making method to identify nonlinear decision models. Int. J. Comput. Appl. 89(15), 1–6 (2014)Google Scholar
  19. 19.
    Sałabun, W.: The use of fuzzy logic to evaluate the nonlinearity of human multi-criteria used in decision making. Przegląd Elektrotechniczny 88(10b), 235–238 (2012)Google Scholar
  20. 20.
    Sałabun, W.: Reduction in the number of comparisons required to create matrix of expert judgment in the Comet Method. Manage. Prod. Eng. Rev. 5(3), 62–69 (2014)Google Scholar
  21. 21.
    Sałabun, W.: The characteristic objects method: a new distance-based approach to multicriteria decision-making problems. J. Multi-Criteria Decis. Anal. 22(1–2), 37–50 (2015)CrossRefGoogle Scholar
  22. 22.
    Tabari, M., Kaboli, A., Aryanezhad, M.B., Shahanaghi, K., Siadat, A.: A new method for location selection: a hybrid analysis. Appl. Math. Comput. 206(2), 598–606 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Tuzkaya, G., Onut, S., Tuzkaya, U.R., Gulsun, B.: An analytic network process approach for locating undesirable facilities: an example from Istanbul, Turkey. J. Environ. Manage. 88(4), 970–983 (2008)CrossRefGoogle Scholar
  24. 24.
    Wątróbski, J., Jankowski, J.: Guideline for MCDA method selection in production management area. In: Intelligent Systems Reference Library, vol. 98. Springer, Heidelberg, pp. 119–138 (2015)Google Scholar
  25. 25.
    Wątróbski, J., Jankowski, J.: Knowledge management in MCDA domain. In: Annals of Computer Science and Information Systems, vol. 5, pp. 1445–1450, IEEE (2015)Google Scholar
  26. 26.
    Wątróbski, J., Ziemba, P., Wolski, W.: Methodological aspects of decision support system for the location of renewable energy sources. In: Annals of Computer Science and Information Systems, vol. 5, pp. 1451–1459 IEEE (2015)Google Scholar
  27. 27.
    Wey, W.M., Wu, K.Y.: Using ANP priorities with goal programming in resource allocation in transportation. Math. Comput. Model. 46(7–8), 985–1000 (2007)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Ziemba, P., Piwowarski, M., Jankowski, J., Wątróbski, J.: Method of criteria selection and weights calculation in the process of web projects evaluation. LNAI 8733, 684–693 (2014)Google Scholar
  29. 29.
    Żak, J., Redmer, A., Sawicki, P.: Multiple objective optimization of the fleet sizing problem for road freight transportation. J. Adv. Transp. 45(4), 321–347 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.West Pomeranian University of TechnologySzczecinPoland
  2. 2.The Jacob of Paradyż University of Applied Sciences in Gorzów WielkopolskiGorzów WielkopolskiPoland

Personalised recommendations