Cryptanalysis of SDES Using Genetic and Memetic Algorithms

  • Kamil Dworak
  • Jakub Nalepa
  • Urszula Boryczka
  • Michal Kawulok
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 642)

Abstract

In this paper, we exploit evolutionary algorithms for cryptanalysis and we focus on a chosen-plaintext attack model, in which the attacker is able to access both the ciphertext and the plaintext. The aim of this attack is to determine the decryption key for the Simplified Data Encryption Standard, so that other encrypted texts can be easily deciphered. We propose to extract the key using genetic and memetic algorithms (the latter being a hybrid of the evolutionary techniques and some refinement procedures). An extensive experimental study, coupled with the sensitivity analysis on method components and statistical tests, show the convergence capabilities of our approaches and prove they are very competitive compared with other state-of-the-art algorithms.

Keywords

Memetic algorithm Genetic algorithm Cryptanalysis SDES 

References

  1. 1.
    Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-based encryption. In: Proceedings of the ACM Conference on Computer and Communications Security. CCS 09, pp. 121–130. ACM, New York, USA (2009)Google Scholar
  2. 2.
    Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Inc., Boca Raton (1995)Google Scholar
  3. 3.
    Spillman, R., Janssen, M., Nelson, B., Kepner, M.: Use of a genetic algorithm in the cryptanalysis of simple substitution ciphers. Cryptologia 17(1), 31–44 (1993)CrossRefGoogle Scholar
  4. 4.
    Song, J., Zhang, H., Meng, Q., Wang, Z.: Cryptanalysis of two-round DES using genetic algorithms. In: Kang, L., Liu, Y., Zeng, S. (eds.) Advances in Computation and Intelligence, vol. 4683, pp. 583–590. LNCS, Springer, Berlin (2007)Google Scholar
  5. 5.
    Boryczka, U., Dworak, K.: Genetic transformation techniques in cryptanalysis. In: Nguyen, N., Attachoo, B., Trawiñski, B., Somboonviwat, K. (eds.) Intelligent Information and Database Systems, vol. 8398, pp. 147–156. LNCS, Springer, Berlin (2014)Google Scholar
  6. 6.
    Boryczka, U., Dworak, K.: Cryptanalysis of transposition cipher using evolutionary algorithms. In: Hwang, D., Jung, J., Nguyen, N.T. (eds.) Proceedings of ICCCI, vol. 8733, pp. 623–632. LNCS, Springer, Berlin (2014)Google Scholar
  7. 7.
    Garg, P.: Cryptanalysis of SDES via evolutionary computation techniques. CoRR abs/0906.5123 (2009)Google Scholar
  8. 8.
    Dworak, K., Boryczka, U.: Cryptanalysis of SDES using modified version of binary particle swarm optimization. In: Proceedings of ICCCI. LNCS, Springer (2015) (in press)Google Scholar
  9. 9.
    Youssef, A.M.: Cryptanalysis of a quadratic knapsack cryptosystem. Comp. Math. App. 61(4), 1261–1265 (2011)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Russell, M., Clark, J., Stepney, S.: Using ants to attack a classical cipher. In: Cantu-Paz, E., et al. (eds.) Proceedings of GECCO, vol. 2723, pp. 146–147. Lecture Notes in Computer Science, Springer, Berlin (2003)Google Scholar
  11. 11.
    Garici, M., Drias, H.: Cryptanalysis of substitution ciphers using scatter search. In Mira, J., Alvarez, J. (eds.) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, vol. 3562, pp. 31–40. Lecture Notes in Computer Science, Springer, Berlin (2005)Google Scholar
  12. 12.
    Dewu, X., Wei, C.: A survey on cryptanalysis of block ciphers. In: 2010 International Conference on Computer Application and System Modeling (ICCASM), vol. 8, pp. 218–220 (2010)Google Scholar
  13. 13.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, London (1996)MATHGoogle Scholar
  14. 14.
    Nalepa, J., Kawulok, M.: A memetic algorithm to select training data for support vector machines. In: Proceedings of GECCO 2014, pp. 573–580. ACM, NY, USA (2014)Google Scholar
  15. 15.
    Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comp. 15(5), 591–607 (2011)Google Scholar
  16. 16.
    Kawulok, M., Nalepa, J.: Support vector machines training data selection using a genetic algorithm. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) S + SSPR 2012, vol. 7626, pp. 557–565, LNCS, Springer, Berlin (2012)Google Scholar
  17. 17.
    Nalepa, J., Kawulok, M.: Adaptive genetic algorithm to select training data for support vector machines. In: Esparcia-Alcazar, A.I., Mora, A.M. (eds.) Applications of Evolutionary Computation, vol. 8602, pp. 514–525. LNCS, Springer, Berlin (2014)–525Google Scholar
  18. 18.
    Cekala, T., Telec, Z., Trawinski, B.: Truck loading schedule optimization using genetic algorithm for yard management. In: Nguyen, N.T., Trawiñski, B., Kosala, R. (eds.) Intelligent Information and Database Systems, vol. 9011, pp. 536–548. LNCS, Springer, Berlin (2015)Google Scholar
  19. 19.
    Nalepa, J., Blocho, M.: Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Comput 1–19 (2015)Google Scholar
  20. 20.
    Knudsen, L., Mathiassen, J.: A chosen-plaintext linear attack on DES. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) Fast Software Encryption, vol. 1978, pp. 262–272. LNCS, Springer, Berlin (2001)Google Scholar
  21. 21.
    Schaefer, E.F.: A simplified data encryption standard algorithm. Cryptologia 20(1), 77–84 (1996)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kamil Dworak
    • 1
    • 3
  • Jakub Nalepa
    • 2
    • 3
  • Urszula Boryczka
    • 1
  • Michal Kawulok
    • 2
    • 3
  1. 1.University of SilesiaSosnowiecPoland
  2. 2.Silesian University of TechnologyGliwicePoland
  3. 3.Future ProcessingGliwicePoland

Personalised recommendations