Advertisement

Design for Smooth Models over Complex Regions

  • Peter CurtisEmail author
  • Hugo Maruri-Aguilar
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

Smooth supersaturated models are a modelling alternative for computer experiments. They are polynomial models that behave like splines and allow fast computations. In this contribution we use a boxing approach together with Gram-Schmidt orthogonalization to model over complex regions. We then perform a two stage design and modelling strategy and apply our methodology in a complex example taken from the literature of soap film smoothing.

Keywords

Design Point Design Region Soap Film Multivariate Polynomial Monomial Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baldoni, V., Berline, N., De Loera, J.A., Köppe, M., Vergne, M.: How to integrate a polynomial over a simplex. Math. Comput. 80, 297–325 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bates, R.A., Curtis, P.R., Maruri-Aguilar, H., Wynn, H.P.: Optimal design for smooth supersaturated models. J. Stat. Plan. Inference 154, 3–11 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bates, R.A., Giglio, B., Wynn, H.P.: A global selection procedure for polynomial interpolators. Technometrics 45, 246–255 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bates, R.A., Maruri-Aguilar, H., Wynn, H.P.: Smooth supersaturated models. J. Stat. Comput. Simul. 84, 2453–2464 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Becker, T., Weispfenning, V.: The Chinese remainder problem, multivariate interpolation, and Gröbner bases. In: ISSAC ’91: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, Bonn, pp. 64–69 (1991)Google Scholar
  6. 6.
    deBoor, C.: A Practical Guide to Splines. Volume 27 of Applied Mathematical Sciences, revised edn. Springer, New York (2001)Google Scholar
  7. 7.
    De Loera, J.A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Wu, J.: Software for exact integration of polynomials over polyhedra. ACM Commun. Comput. Algebra 45, 169–172 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dette, H., Melas, V.B., Pepelyshev, A.: Optimal design for smoothing splines. Ann. Inst. Stat. Math. 63, 981–1003 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. RAIRO Analyse Numerique 10, 5–12 (1976)MathSciNetGoogle Scholar
  10. 10.
    Lai, M.-J.: Multivariate splines for data fitting and approximation. In: Neamtu, M., Schumaker, L.L. (eds.) Approximation Theory XII: San Antonio, pp. 210–228. Nashboro Press, Brentwood (2007)Google Scholar
  11. 11.
    Lekivetz, R., Jones, B.: Fast flexible space-filling designs for nonrectangular regions. Qual. Reliab. Eng. Int. 31, 829–837 (2015)CrossRefGoogle Scholar
  12. 12.
    Ramsay, T.: Spline smoothing over difficult regions. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 307–319 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Tan, M.H.Y.: Stochastic polynomial interpolation for uncertainty quantification with computer experiments. Technometrics 57, 457–467 (2015)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Wahba, G.: Spline Models for Observational Data. Volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)Google Scholar
  15. 15.
    Wang, H., Ranalli, M.G.: Low-rank smoothing splines on complicated domains. Biometrics 63, 209–217 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Wood, S.N., Bravington, M.V., Hedley, S.L.: Soap film smoothing. J. R. Stat. Soc. Ser. B Stat. Methodol. 70, 931–955 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Woods, D., Lewis, S.: All-bias designs for polynomial spline regression models. Aust. N. Z. J. Stat. 48, 49–58 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Queen MaryUniversity of LondonLondonUK

Personalised recommendations