Likelihood-Free Extensions for Bayesian Sequentially Designed Experiments

  • Markus HainyEmail author
  • Christopher C. Drovandi
  • James M. McGree
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


When considering a Bayesian sequential design framework, sequential Monte Carlo (SMC) algorithms are a natural approach. However, these algorithms require the likelihood function to be evaluated. Therefore, they cannot be applied in cases where the likelihood is not available or is intractable. To overcome this limitation, we propose likelihood-free extensions of the standard SMC algorithm. We also investigate a specific simulation-based approximation of the likelihood known as the synthetic likelihood. The algorithms are applied and tested on a well-studied sequential design problem for estimating a non-linear function of linear regression parameters.



We thank Werner G. Müller for suggesting the illustrative example and three anonymous reviewers for their helpful comments. Markus Hainy has been supported by the French Science Fund (ANR) and Austrian Science Fund (FWF) bilateral grant I-833-N18. Christopher Drovandi was supported by an Australian Research Council’s Discovery Early Career Researcher Award funding scheme (DE160100741).


  1. 1.
    Blum, M.G.B.: Approximate Bayesian computation: a nonparametric perspective. J. Am. Stat. Assoc. 105 (491), 1178–1187 (2010). doi:10.1198/jasa.2010.tm09448CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Drovandi, C.C., McGree, J.M., Pettitt, A.N.: Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data. Comput. Stat. Data Anal. 57, 320–335 (2013). doi:10.1016/j.csda.2012.05.014CrossRefMathSciNetGoogle Scholar
  3. 3.
    Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67 (1), 225–233 (2011). doi:10.1111/j.1541-0420.2010.01410.xCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ford, I., Silvey, S.D.: A sequentially constructed design for estimating a nonlinear parametric function. Biometrika 67, 381–388 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Hainy, M., Müller, W.G., Wagner, H.: Likelihood-free simulation-based optimal design with an application to spatial extremes. Stoch. Environ. Res. Risk A. Stoch. Environ. Res. Risk A. 30 (2), 481–492 (2016). doi:10.1007/s00477-015-1067-8CrossRefGoogle Scholar
  6. 6.
    Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)zbMATHGoogle Scholar
  7. 7.
    Sisson, S.A., Fan, Y.: Likelihood-free Markov chain Monte Carlo. In: Brooks, S.P., Gelman, A., Jones, G., Meng, X.L. (eds.) Handbook of Markov Chain Monte Carlo, Handbooks of Modern Statistical Methods, pp. 319–341. Chapman & Hall/CRC Press, Boca Raton (2011)Google Scholar
  8. 8.
    Wood, S.N.: Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466, 1102–1104 (2010). doi:10.1038/nature09319CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Markus Hainy
    • 1
    Email author
  • Christopher C. Drovandi
    • 2
  • James M. McGree
    • 2
  1. 1.Department of Applied StatisticsJohannes Kepler UniversityLinzAustria
  2. 2.School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations