Advertisement

Semi-parametric Models for Longitudinal Count, Binary and Multinomial Data

  • Brajendra C. SutradharEmail author
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 218)

Abstract

In a longitudinal setup, the semi-parametric regression model contains a specified regression function in some suitable time dependent primary covariates and a non-parametric function in some other time dependent say secondary covariates. However, the functional form for such a semi-parametric regression model depends on the nature of the repeated responses collected from a large number of independent individuals. In cross sectional setup, these functional forms represent the marginal expectations of the responses, whereas in a longitudinal setup, in general, they represent the expectation of a response at a given time conditional on past responses. More specifically, these conditional expectations are modelled through certain dynamic relationships among the repeated responses which also specify the longitudinal correlation structure among these repeated responses. In this paper, we consider a lag 1 dynamic relationship among repeated responses whether they are linear, count, binary or multinomial, and exploit the underlying correlation structure for consistent and efficient estimation of the regression parameters involved in the specified regression function in primary covariates. Because the non-parametric function in secondary covariates is not of direct interest, for simplicity, we estimate this function consistently in all cases by using ‘working’ independence assumption for the repeated responses.

Keywords

Binary response Consistency Count response Dynamic model for repeated responses Multinomial/categorical response Non-parametric function Non-stationary correlations Parametric regression function Semi-parametric quasi-likelihood estimation Semi-parametric generalized quasi-likelihood estimation 

Notes

Acknowledgements

The author thanks the audience for their comments and suggestions.

References

  1. Amemiya, T.: Advanced Econometrics. Harvard University Press, Cambridge (1985)Google Scholar
  2. Carota, C., Parmigiani, G.: Semiparametric regression for count data. Biometrika 89, 265–281 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Horowitz, J.L.: Semiparametric and Nonparametric Methods in Econometrics. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  4. Lin, X., Carroll, R.J.: Semiparametric regression for clustered data using generalized estimating equations. J. Am. Stat. Assoc. 96, 1045–1056 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Loredo-Osti, J.C., Sutradhar, B.C.: Estimation of regression and dynamic dependence parameters for non-stationary multinomial time series. J. Time Series Anal. 33, 458–467 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. McDonald, D.R.: The local limit theorem: a historical perspective. J. Iranian Stat. Soc. 4, 73–86 (2005)Google Scholar
  7. Severini, T.A., Staniswallis, J.G.: Quasi-likelihood estimation in semiparametric models. J. Am. Stat. Assoc. 89, 501–511 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Sneddon, G., Sutradhar, B.C.: On semiparametric familial-longitudinal models. Stat. Probab. Lett. 69, 369–379 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Sutradhar, B.C.: An overview on regression models for discrete longitudinal responses. Stat. Sci. 18, 377–393 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Sutradhar, B.C.: Inferences in generalized linear longitudinal mixed models. Can. J. Stat. Special issue 38, 174–196 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Sutradhar, B.C.: Dynamic Mixed Models for Familial Longitudinal Data. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  12. Sutradhar, B.C.: Longitudinal Categorical Data Analysis. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  13. Sutradhar, B.C., Warriyar, K.V., Zheng, N.: Inferences in semi-parametric dynamic models for repeated count data. Aust N Z J Stat. (2016)Google Scholar
  14. Warriyar, K.V., Sutradhar, B.C.: Estimation with improved efficiency in semi-parametric linear longitudinal models. Braz. J. Probab. Stat. 28, 561–586 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. You, J., Chen, G.: Semiparametric generalized least squares estimation in partially linear regression models with correlated errors. J. Stat. Plan. Infer. 137, 117–132 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Zeger, S.L., Diggle, P.J.: Semi-parametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics 50, 689–699 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial UniversitySt. John’sCanada

Personalised recommendations