Advertisement

The Oral Microbiota

  • Nicole B. Arweiler
  • Lutz Netuschil
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 902)

Abstract

The oral microbiota represents an important part of the human microbiota, and includes several hundred to several thousand diverse species. It is a normal part of the oral cavity and has an important function to protect against colonization of extrinsic bacteria which could affect systemic health. On the other hand, the most common oral diseases caries, gingivitis and periodontitis are based on microorganisms. While (medical) research focused on the planktonic phase of bacteria over the last 100 years, it is nowadays generally known, that oral microorganisms are organised as biofilms. On any non-shedding surfaces of the oral cavity dental plaque starts to form, which meets all criteria for a microbial biofilm and is subject to the so-called succession. When the sensitive ecosystem turns out of balance – either by overload or weak immune system – it becomes a challenge for local or systemic health. Therefore, the most common strategy and the golden standard for the prevention of caries, gingivitis and periodontitis is the mechanical removal of this biofilms from teeth, restorations or dental prosthesis by regular toothbrushing.

Keywords

Biofilm Health-disease-relationship Periodontitis Dental plaque 

References

  1. Aas JA, Paster BJ, Stokel LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732PubMedPubMedCentralCrossRefGoogle Scholar
  2. Al-Ahmad A, Wunder A, Auschill TM, Follo M, Braun G, Hellwig E, Arweiler NB (2007) The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol 56:681–687PubMedCrossRefGoogle Scholar
  3. Al-Ahmad A, Follo M, Selzer AC, Hellwig E, Hannig M, Hannig C (2009) Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. J Med Microbiol 58:1359–1366PubMedCrossRefGoogle Scholar
  4. Al-Ahmad A, Wiedmann-Al-Ahmad M, Faust J, Bächle M, Follo M, Wolkewitz M, Hannig C, Hellwig E, Carvalho C, Kohal R (2010) Biofilm formation and composition on different implant materials in vivo. J Biomed Mater Res B Appl Biomater 95:101–109PubMedCrossRefGoogle Scholar
  5. Al-Ahmad A, Hellwig E, Follo M, Auschill TM, Arweiler NB (2014) Probiotic lactobacilli do not integrate into oral biofilm in situ. In: The ESCMID Study Group for Biofilms meeting, 09–10 October 2014, RomeGoogle Scholar
  6. Alaluusua S, Asikainen S (1988) Detection and distribution of Actinobacillus actinomycetemcomitans in the primary dentition. J Periodontol 59:504–507PubMedCrossRefGoogle Scholar
  7. Alaluusua S, Asikainen S, Lai C-H (1991) Intrafamilial transmission of Actinobacillus actinomycetemcomitans. J Periodontol 62:207–210PubMedCrossRefGoogle Scholar
  8. Anwar H, Strap JL, Costerton JW (1992) Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arweiler NB, Hellwig E, Sculean A, Hein N, Auschill TM (2004) Individual vitality pattern of in situ dental biofilms at different locations in the oral cavity. Caries Res 38:442–447PubMedCrossRefGoogle Scholar
  10. Arweiler NB, Netuschil L, Beier D, Grunert S, Heumann C, Altenburger MJ, Sculean A, Nagy K, Al-Ahmad A, Auschill TM (2013) Action of food preservatives on 14-days dental biofilm formation, biofilm vitality, and biofilm-derived enamel demineralisation in situ. Clin Oral Invest. [Epub ahead of print] doi: 10.1007/s00784-013-1053-9
  11. Auschill TM, Arweiler NB, Brecx M, Reich E, Sculean A, Netuschil L (2002) The effect of dental restorative materials on dental biofilm. Eur J Oral Sci 110:48–53PubMedCrossRefGoogle Scholar
  12. Auschill TM, Hellwig E, Sculean A, Hein N, Arweiler NB (2004) Impact of the intraoral location on the rate of biofilm growth. Clin Oral Invest 8:97–101CrossRefGoogle Scholar
  13. Babaahmady KG, Challacombe SJ, Marsh PD, Newman HN (1998) Ecological study of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus spp. at sub-sites from approximal dental plaque from children. Caries Res 32:51–58PubMedCrossRefGoogle Scholar
  14. Beighton D (1986) A simplified procedure for estimating the level of Streptococcus mutans in the mouth. Br Dent J 160:329–330PubMedCrossRefGoogle Scholar
  15. Bik EM, Armitage GC, Loomer P, Emerson J, Mongodin EF, Nelson KE, Gill SR, Raser-Liggett CM, Relman DA (2010) Bacerial diversity in the oral cavity of 10 healthy individuals. ISME J 4:962–974PubMedPubMedCentralCrossRefGoogle Scholar
  16. Busscher HJ, van der Mei HC (1997) Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11:24–32PubMedCrossRefGoogle Scholar
  17. Caufield PW, Cutter GR, Dasanayake AP (1993) Initial Acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res 72:37–45PubMedCrossRefGoogle Scholar
  18. Collins LMC, Dawes C (1987) The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res 66:1300–1302PubMedCrossRefGoogle Scholar
  19. Costerton JW, Lewandowski Z (1997) The biofilm lifestyle. Adv Dent Res 11:192–195CrossRefGoogle Scholar
  20. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745CrossRefGoogle Scholar
  21. Costerton JW, Cook G, Lamont R (1999) The community architecture of biofilms: dynamic structures and mechanisms. In: Newman HN, Wilson M (eds) Dental plaque revisited. BioLine, Antony Rowe Ltd, Chippenham, pp 5–14Google Scholar
  22. Davey HM (2011) Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77:5571–5576PubMedPubMedCentralCrossRefGoogle Scholar
  23. del Pozo JL, Patel R (2007) The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82:204–209PubMedCrossRefGoogle Scholar
  24. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedPubMedCentralCrossRefGoogle Scholar
  25. Emilson CG, Lindquist B, Wennerholm K (1987) Recolonization of human tooth surfaces by Streptococcus mutans after suppression by Chlorhexidin treatment. J Dent Res 66:150–1508CrossRefGoogle Scholar
  26. Fuqua C, Winans SC, Greenberg EB (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Ann Rev Microbiol 50:727–751CrossRefGoogle Scholar
  27. Fürst MM, Salvi GE, Lang NP, Persson GR (2007) Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res 18:501–508PubMedCrossRefGoogle Scholar
  28. Garlichs UA, Brandau H, Bössmann K (1974) Histotopochemical determination of metabolic activity of carbohydrate metabolism in plaque from sound and carious enamel. Caries Res 8:234–248PubMedCrossRefGoogle Scholar
  29. Gendreau L, Loewy ZG (2011) Epidemiology and etiology of denture stomatitis. J Prosthodont 20:251–260PubMedCrossRefGoogle Scholar
  30. Gusberti FA, Mombelli A, Lang NP, Minder CE (1990) Changes in subgingival microbiota during puberty: a 4-year longitudinal study. J Clin Periodontol 17:685–692PubMedCrossRefGoogle Scholar
  31. Haffajee AD, Socransky SS, Feres M, Ximenez-Fyvie LA (1999) Plaque microbiology in health and disease. In: Newman HN, Wilson M (eds) Dental plaque revisited. BioLine, Antony Rowe Ltd, Chippenham, pp 255–282Google Scholar
  32. Han YW, Houcken W, Loos BG, Schenkein HA, Tezal M (2014) Periodontal disease, atherosclerosis, adverse pregnancy outcomes, and head-and-neck cancer. Adv Dent Res 26:47–55PubMedCrossRefGoogle Scholar
  33. Hannig M (1997) Transmission electron microscopic study of in vivo pellicle formation on dental restorative materials. Eur J Oral Sci 105:422–433PubMedCrossRefGoogle Scholar
  34. Hannig M (1999) Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Invest 3:88–95CrossRefGoogle Scholar
  35. Harris LG, Richards RG (2004) Staphylococcus aureus adhesion to different treated titanium surfaces. J Mater Sci Mater Med 15:311–314PubMedCrossRefGoogle Scholar
  36. Hesselmar B, Sjöberg F, Saalman R, Aberg N, Adlerberth I, Wold AE (2013) Pacifier cleaning practices and risk of allergy development. Pediatrics 131:1829–1837CrossRefGoogle Scholar
  37. Jakubovics NS, Palmer RJ Jr (2013) Oral microbial ecology – current research and new perspectives. Caister Academic Press, NorfolkGoogle Scholar
  38. Jensen J, Liljemark W, Bloomquist C (1981) The effect of female sex hormones on subgingival plaque. J Periodontol 52:599–602PubMedCrossRefGoogle Scholar
  39. Kaiser D, Losick R (1993) How and why bacteria talk to each other. Cell 73:873–885PubMedCrossRefGoogle Scholar
  40. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Mntijn RC, ten Cate JM, Crielaard W (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87:1016–1020PubMedCrossRefGoogle Scholar
  41. Kleinfelder JW, Müller RF, Lange DE (1999) Intraoral persistence of Actinobacillus actinomycetemcomitans in periodontally healthy subjects following treatment of diseases family members. J Clin Periodontol 26:583–589PubMedCrossRefGoogle Scholar
  42. Kolenbrander PE, London J (1993) Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252PubMedPubMedCentralGoogle Scholar
  43. Kolenbrander PE, Andersen RN, Moore LHV (1989) Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun 57:3194–3203PubMedPubMedCentralGoogle Scholar
  44. Kolenbrander PE, Andersen RN, Clemans DL, Whittaker CJ, Klier CM (1999) Potential role of functionally similar coaggregation mediators in bacterial succession. In: Newman HN, Wilson M (eds) Dental plaque revisited. BioLine, Antony Rowe Ltd, Chippenham, pp 171–186Google Scholar
  45. Könönen E (1999) Oral colonization by anaerobic bacteria during childhood: role in health and disease. Oral Dis 5:278–285PubMedCrossRefGoogle Scholar
  46. Könönen E, Jousimies-Somer H, Asikainen S (1992) Relationship between oral gramnegative anaerobic bacteria in saliva of the mother and the colonization of her edentulous infant. Oral Microbiol Immunol 7:273–276PubMedCrossRefGoogle Scholar
  47. Könönen E, Asikainen S, Saarela M, Karjalainen J, Jousimies-Somer H (1994) The oral gram-negative anaerobic microflora in young children: longitudinal changes from edentulous to dentate mouth. Oral Microbiol Immunol 9:136–141PubMedCrossRefGoogle Scholar
  48. Kornman KS, Loesche WJ (1980) The supragingival microbial flora during pregnancy. J Periodontal Res 15:111–112PubMedCrossRefGoogle Scholar
  49. Kornman KS, Loesche WJ (1981) Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect Immun 35:256–257Google Scholar
  50. Kraneveld EA, Buijs MJ, Bonder MJ, Visser M, Keijser BJ, Crielaard W, Zaura E (2012) The relation between oral candida load and bacterial microbiome profiles in Dutch older adults. PLoS One 8(8):e42770. doi: 10.1371/journal.pone.0042770 CrossRefGoogle Scholar
  51. Leonhardt A, Adolfsson B, Lekholm U, Wikström M, Dahlén E (1993) A longitudinal microbiological study on osseointegrated titanium implants in partially edentulous patients. Clin Oral Implants Res 4:113–120PubMedCrossRefGoogle Scholar
  52. Listgarten MA (1965) Electron microscopic observation on the bacterial flora of acute necrotizing ulcerative gingivitis. J Periodontol 36:328–339PubMedCrossRefGoogle Scholar
  53. Listgarten MA (1999) Formation of dental plaque and other oral biofilms. In: Newman HN, Wilson M (eds) Dental plaque revisited. BioLine, Antony Rowe Ltd, Chippenham, pp 187–210Google Scholar
  54. Liu B, Falle LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, Gibbons TH, Teangen TJ, Chang Y-C, Li S, Stine OC, Hasturk H, Kasif S, Segrè D, Pop M, Amar S (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One 7:e37919. doi: 10.1371/journal.pone.0037919 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Marsh PD (1990) Microbial succession in relation to enamel demineralisation. Microb Ecol Health Dis 3:i–iiiCrossRefGoogle Scholar
  56. Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15PubMedCrossRefGoogle Scholar
  57. Marsh PD, Bradshaw DJ (1995) Dental plaque as a biofilm. J Ind Microbiol 15:169–175PubMedCrossRefGoogle Scholar
  58. Marsh PD, Martin MV, Lewis MAO, Williams DW (2009, 2010, 2013) Oral microbiology, 5th ed. Churchill Livingstone Elsevier, EdinburghGoogle Scholar
  59. Micheelis W, Schiffner U, Hoffmann T, Kerschbaum T, John MT (2006) Vierte Deutsche Mundgesundheitsstudie (DMS IV). Deutscher Zahnärzte Verlag, KölnGoogle Scholar
  60. Mikkelsen L (1993) Influence of sucrose intake on saliva and number of microorganisms and acidogenic potential in early dental plaque. Microb Ecol Health Dis 6:253–264CrossRefGoogle Scholar
  61. Moore WEC, Moore LVH (1994) The bacteria of periodontal diseases. Periodontol 2000 5:66–77PubMedCrossRefGoogle Scholar
  62. Moore WEC, Burmeister JA, Brooks CN, Ranney RR, Hinkelmann KH, Schieken RM, Moore LVH (1993) Investigation of the influences of puberty, genetics, and environment on the composition of subgingival periodontal floras. Infect Immun 61:2891–2898PubMedPubMedCentralGoogle Scholar
  63. Morhart R, Fitzgerald R (1980) Composition and ecology of the oral flora. In: Menaker L (ed) The biologic basis of dental caries. Harper & Row, Hagerstown, pp 263–277Google Scholar
  64. Netuschil L, Reich E, Brecx M (1989) Direct measurement of the bactericidal effect of chlorhexidine on human dental plaque. J Clin Periodontol 16:484–488PubMedCrossRefGoogle Scholar
  65. Netuschil L, Reich E, Unteregger G, Sculean A, Brecx M (1998) A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol 43:277–285PubMedCrossRefGoogle Scholar
  66. Netuschil L, Auschill TM, Sculean A, Arweiler NB (2014) Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms – which stain is suitable? BMC Oral Health 14:2PubMedPubMedCentralCrossRefGoogle Scholar
  67. Newman HN, Wilson M (eds) (1999) Dental plaque revisited. BioLine, Antony Rowe Ltd, ChippenhamGoogle Scholar
  68. Obst U, Schwartz T, Volkmann H (2006) Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms. Int J Artif Organs 29:387–394PubMedGoogle Scholar
  69. Offenbacher S, Olsvik B, Tonder A (1985) The similarity of periodontal microorganisms between husband and wife cohabitants. J Periodontol 6:317–323CrossRefGoogle Scholar
  70. Okada M, Hayashi F, Nagasaka N (2001) PCR detection of 5 putative periodontal pathogens in dental plaque samples from children 2 to 12 years of age. J Clin Periodontol 28:576–582PubMedCrossRefGoogle Scholar
  71. Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 42:80–87PubMedCrossRefGoogle Scholar
  72. Percival RS, Challacombe SJ, Marsh PD (1991) Age-related microbiological changes in the salivary and plaque microflora of healthy adults. J Med Microbiol 35:5–11PubMedCrossRefGoogle Scholar
  73. Persson GR, Renvert S (2013) Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. doi: 10.1111/cid.12052 [Epub ahead of print]
  74. Petit MDA, van Steenbergen TJM, Timmerman MF, de Graaff J, van der Velden U (1994) Prevalence of periodontitis and suspected periodontal pathogens in families of adult periodontitis patients. J Clin Periodontol 21:76–85PubMedCrossRefGoogle Scholar
  75. Postgate JR (1969) Viable counts and viability. Meth Microbiol 1:611–628CrossRefGoogle Scholar
  76. Preus HR, Olsen I (1988) Possible transmittance of A. actinomycetemcomitans from a dog to a child with rapidly destructive periodontitis. J Periodont Res 23:68–71PubMedCrossRefGoogle Scholar
  77. Prosser JI (1999) Quorum sensing in biofilms. In: Newman HN, Wilson M (eds) Dental plaque revisited. BioLine, Antony Rowe Ltd, Chippenham, pp 79–88Google Scholar
  78. Quirynen M, De Soete M, Dierickx K, van Steenberghe D (2001) The intra-oral translocation of periodontopathogens jeopardises the outcome of periodontal therapy. A review of the literature. J Clin Periodontol 28:499–507PubMedCrossRefGoogle Scholar
  79. Rams TE, Feik D, Slots J (1990) Staphylococci in human periodontal diseases. Oral Microbiol Immunol 5:29–32PubMedCrossRefGoogle Scholar
  80. Ritz HL (1967) Microbial population shifts in developing human dental plaque. Arch Oral Biol 12:1561–1568PubMedCrossRefGoogle Scholar
  81. Rönström A, Edwardsson S, Attström R (1977) Streptococcus sanguis and Streptococcus salivarius in early plaque formation on plastic films. J Periodontol Res 12:331–339CrossRefGoogle Scholar
  82. Saarela M, von Troil-Lindén B, Torkko H, Stucki A-M, Alahuusua S, Jousimies-Somer H, Asikainen S (1993) Transmission of oral bacterial species between spouses. Oral Microbiol Immunol 8:349–354PubMedCrossRefGoogle Scholar
  83. Salerno C, Pascale M, Contaldo M, Esposito V, Busciolano M, Milillo L, Guida A, Petruzzi M, Serpico R (2011) Candida-associated denture stomatitis. Med Oral Patol Oral Cir Bucal 16:139–143CrossRefGoogle Scholar
  84. Salvi GE, Fürst MM, Lang NP, Persson GR (2008) One-year bacterial colonization patterns of Staphylococcus arueus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res 19:242–248PubMedCrossRefGoogle Scholar
  85. Saxton CA (1973) Scanning electron microscope study of the formation of dental plaque. Caries Res 7:102–119PubMedCrossRefGoogle Scholar
  86. Schlagenhauf U, Pommerencke K, Weiger R (1995) Influence of toothbrushing, eating and smoking on Dentocult SM Strip mutans test scores. Oral Microbiol Immunol 10:98–101PubMedCrossRefGoogle Scholar
  87. Slots J, Gibbons RJ (1978) Attachment of Bacteroides melaninogenicus subsp. assaccharolyticus to oral surfaces and its possible role in colonization of the mouth and of periodontal pockets. Infect Immun 19:254–264PubMedPubMedCentralGoogle Scholar
  88. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144PubMedCrossRefGoogle Scholar
  89. Sönju T (1987) Pellicle – formation, composition and possible role. Chapter 4. In: Thylstrup A, Fejerskov O (eds) Textbook of cariology. Munksgaard, p 46–55Google Scholar
  90. Tanner A, Maiden MFJ, Macuch PJ, Murray LL, Kent RL Jr (1998) Microbiota of health, gingivitis, and initial periodontitis. J Clin Periodontol 25:85–98PubMedCrossRefGoogle Scholar
  91. ten Cate JM (2006) Biofilms, a new approach to the microbiology of dental plaque. Odontology 94:1–9PubMedCrossRefGoogle Scholar
  92. Theilade E, Theilade J (1970) Bacteriological and ultrastructural studies of developing dental plaque. In: McHugh (ed) Dental plaque. Livingstone, Edinburgh, pp 27–40Google Scholar
  93. Theilade E, Wright WH, Jensen SB, Löe H (1966) Experimental gingivitis in man. II. A longitudinal clinical and bacteriological investigation. J Periodontol Res 1:1–13CrossRefGoogle Scholar
  94. Van der Velden U, Abbas F, Armand S, de Graaff J, Timmerman MF, van der Weijden GA, van Winkelhoff AJ, Winkel EG (1993) The effect of sibling relationship on the periodontal condition. J Clin Periodontol 20:683–690PubMedCrossRefGoogle Scholar
  95. Van Houte J, Green DB (1974) Relationship between the concentration of bacteria in saliva and the colonization of teeth in humans. Infect Immun 9:624–630PubMedPubMedCentralGoogle Scholar
  96. Van Palenstein Helderman WH (1981) Longitudinal microbial changes in developing human supragingival and subgingival dental plaque. Archs Oral Biol 26:7–12CrossRefGoogle Scholar
  97. Van Winkelhoff AJ, Boutaga K (2005) Transmission of periodontal bacteria and models of infection. J Clin Periodontol 32(Suppl 6):16–27PubMedCrossRefGoogle Scholar
  98. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658PubMedCrossRefGoogle Scholar
  99. Von Troil-Lindén B, Alahuusua S, Wolf J, Jousimies-Somer H, Torppa J, Asikainen S (1997) Periodontitis patient and the spouse: periodontal bacteria before and after treatment. J Clin Periodontol 24:893–899CrossRefGoogle Scholar
  100. Wade WG (2013) Detection and culture of novel oral Bacteria. In: Jakubovics NS, Palmer RJ Jr (eds) Oral microbial ecology – current research and new perspectives. Caister Academic Press, NorfolkGoogle Scholar
  101. Wimpenny JWT (1997) The validity of models. Adv Dent Res 11:150–159PubMedCrossRefGoogle Scholar
  102. Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671PubMedCrossRefGoogle Scholar
  103. Winterberg H (1898) Zur Methodik der Bakterienzählung [Concerning methods to count bacteria]. Z Hyg 29:75–93Google Scholar
  104. Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zaura-Arite E, van Marle J, ten Cate JM (2001) Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80:1436–1440PubMedCrossRefGoogle Scholar
  106. Ziegler NR, Halvorson HO (1935) Application of statistics to problems in bacteriology. IV. Experimental comparison of the dilution method, the plate count, and the direct count for the determination of bacterial populations. J Bacteriol 29:609–634PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PeriodontologyUniversity of MarburgMarburgGermany

Personalised recommendations