On Reachability Analysis of Updatable Timed Automata with One Updatable Clock

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9559)


As an extension of Timed Automata (TAs), Updatable Timed Automata (UTAs) proposed by Bouyer et al. have the ability to update clocks in a more elaborate way than simply reset them to zero. The reachability of general UTAs is undecidable, by regarding a pair of updatable clocks as counters updatable with incrementation and decrementation operations. This paper investigates the model of subclass of UTAs by restricting the number of updateable clocks. It is shown that the reachability of UTAs with one updatable clock (UTA1s) under diagonal-free constraints is decidable. The decidability is proved by treating a region of a UTA1 as an unbounded digiword, and encoding sets of digiwords that are accepted by a pushdown system where regions are generated on-the-fly on the stack.



This work is supported by the NSFC-JSPS bilateral joint research project (61511140100), the National Natural Science Foundation of China (No. 61472240, 91318301, 61261130589), and JSPS KAKENHI Grant-in-Aid for Scientific Research(B) (15H02684, 25280023) and Challenging Exploratory Research (26540026).


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Are timed automata updatable? In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bouyer, P., Dufourd, C., Fleury, É., Petit, A.: Expressiveness of updatable timed automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 232–242. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput. Sci. 321, 291–345 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Schwoon, S.: Model-checking pushdown system. Ph.D. thesis, Technical University of Munich (2000)Google Scholar
  6. 6.
    Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a decidability gap. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS’04), IEEE Computer Society, pp. 54–63 (2004)Google Scholar
  7. 7.
    Abdulla, P.A., Jonsson, B.: Verifying Networks of Timed Processes (Extended Abstract). In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 298. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Abdulla, P., Jonsson, B.: Model checking of systems with many identical time processes. Theor. Comput. Sci. 290, 241–264 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 189–205. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  11. 11.
    Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. J. Automata, Lang. Comb. 5, 371–404 (2000)MathSciNetMATHGoogle Scholar
  12. 12.
    Demichelis, F., Zielonka, W.: Controlled timed automata. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 455–469. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Wen, Y., Li, G., Yuen, S.: An over-approximation forward analysis for nested timed automata. In: Liu, S., Duan, Z. (eds.) SOFL+MSVL 2014. LNCS, vol. 8979, pp. 62–80. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Upper Saddle River (1967)MATHGoogle Scholar
  16. 16.
    Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in System Design 24, 281–320 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fang, B., Li, G., Fang, L., Xiang, J.: A refined algorithm for reachability analysis of updatable timed automata. In: Proceedings of the 1st IEEE International Workshop on Software Engineering and Knowledge Management (SEKM 2015 @ QRS 2015), IEEE Computer Society, pp. 230–236 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of SoftwareShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Graduate School of Information ScienceNagoya UniversityNagoyaJapan

Personalised recommendations