Advertisement

Conclusions and Future Work

  • Hans Meyvaert
  • Michiel Steyaert
Chapter
  • 608 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In the past, the trend to integrate power supplies has been driven mainly by the associated cost-reduction perspective. Indeed, pushing the operation frequency of switched-mode power supplies to higher frequencies has steadily reduced the cost and volume of the passive components. Once these values are small enough, it is possible to include them within the package (PSiP), or even on the chip (PSoC). This evolution is currently taking place.

Keywords

Integrated Power Supply Switch Mode Power Supplies Passive Components High Voltage Conversion Ratio Power Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 10.
    H. Bergveld, K. Nowak, R. Karadi, S. Iochem, J. Ferreira, S. Ledain, E. Pieraerts, M. Pommier, A 65-nm-CMOS 100-MHz 87%-efficient DC-DC down converter based on dual-die system-in-package integration, in IEEE Energy Conversion Congress and Exposition, 2009 (ECCE 2009) (2009), pp. 3698–3705Google Scholar
  2. 11.
  3. 12.
    E. Burton, G. Schrom, F. Paillet, J. Douglas, W. Lambert, K. Radhakrishnan, M. Hill, Fully integrated voltage regulators on 4th generation intel®; coreTM SoCs, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 432–439Google Scholar
  4. 16.
    V. De, Energy efficient computing in nanoscale CMOS: challenges and opportunities, in 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC) (2014), pp. 121–124Google Scholar
  5. 22.
    M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRefGoogle Scholar
  6. 35.
    K. Kesarwani, R. Sangwan, J. Stauth, Resonant-switched capacitor converters for chip-scale power delivery: design and implementation. IEEE Trans. Power Electron. 30(12), 6966–6977 (2015)Google Scholar
  7. 36.
    W. Kim, D. Brooks, G. Yeon Wei, A fully-integrated 3-level DC-DC converter for nanosecond-scale DVFS. IEEE J. Solid State Circuits 47(1), 206–219 (2012)Google Scholar
  8. 44.
    S.K. Lee, T. Tong, X. Zhang, D. Brooks, G.-Y. Wei, A 16-core voltage-stacked system with an integrated switched-capacitor DC-DC converter, in 2015 Symposium on VLSI Circuits (2015)Google Scholar
  9. 45.
    Y. Lei, R. Pilawa-Podgurski, A general method for analyzing resonant and soft-charging operation of switched-capacitor converters. IEEE Trans. Power Electron. 30(10), 5650–5664 (2015)Google Scholar
  10. 64.
    R. Middlebrook, Transformerless DC-to-DC converters with large conversion ratios. IEEE Trans. Power Electron. 3(4), 484–488 (1988)Google Scholar
  11. 74.
    R. Pilawa-Podgurski, Scalable series-stacked power delivery architectures for improved efficiency and reduced supply current, in International Power Supply on Chip Workshop (PowerSoC), Boston (2014)Google Scholar
  12. 75.
    R. Pilawa-Podgurski, D. Perreault, Merged two-stage power converter with soft charging switched-capacitor stage in 180 nm CMOS. IEEE J. Solid State Circuits 47(7), 1557–1567 (2012)Google Scholar
  13. 78.
    S. Rajapandian, Z. Xu, K.L. Shepard, Implicit DC-DC downconversion through charge-recycling. IEEE J. Solid State Circuits 40(4), 846–852 (2005)Google Scholar
  14. 86.
    S. Sanders, E. Alon, H.-P. Le, M. Seeman, M. John, V. Ng, The road to fully integrated DC–DC conversion via the switched-capacitor approach. IEEE Trans. Power Electron. 28(9), 4146–4155 (2013)Google Scholar
  15. 88.
    C. Schaef, K. Kesarwani, J. Stauth, A variable-conversion-ratio 3-phase resonant switched capacitor converter with 85% efficiency at 0.91 W/mm2 using 1.1nH PCB-trace inductors, in 2015 IEEE International Solid- State Circuits Conference - (ISSCC) (2015), pp. 1–3Google Scholar
  16. 97.
    P.S. Shenoy, P.T. Krein, Differential power processing for DC systems. IEEE Trans. Power Electron. 28(4), 1795–1806 (2013)CrossRefGoogle Scholar
  17. 98.
    P. Shenoy, S. Zhang, R. Abdallah, P. Krein, N. Shanbhag, Overcoming the power wall: connecting voltage domains in series, in 2011 International Conference on Energy Aware Computing (ICEAC) (2011), pp. 1–6Google Scholar
  18. 103.
    M. Steyaert, T. Van Breussegem, H. Meyvaert, P. Callemeyn, M. Wens, DC-dc converters: from discrete towards fully integrated CMOS, in 2011 Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (2011), pp. 42–49Google Scholar
  19. 120.
    G. Villar Piqué, E. Alarcon, Monolithic integration of a 3-level DCM-operated low-floating-capacitor buck converter for DC-DC step-down donversion in standard CMOS, in IEEE Power Electronics Specialists Conference, 2008. PESC 2008 (2008), pp. 4229–4235Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hans Meyvaert
    • 1
  • Michiel Steyaert
    • 2
  1. 1.Kessel-LoBelgium
  2. 2.LeuvenBelgium

Personalised recommendations