Advertisement

Two-Stage Approach for Compact and Efficient Low Power from the Mains

  • Hans Meyvaert
  • Michiel Steyaert
Chapter
  • 622 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter continues the investigation of Chaps.  3 and 4, but introduces an alternative solution approach to realize the same goal of extracting relatively low amounts of power from the mains into a low DC voltage, and this at high efficiency.

Keywords

Voltage Conversion Ratio Buffer Capacitor Secondary Converter Switched-capacitor Topology Voltage Rating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Alon, M. Horowitz, Integrated regulation for energy-efficient digital circuits. IEEE J. Solid State Circuits 43(8), 1795–1807 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Alonso, M. Dalla Costa, C. Ordiz, Integrated buck-flyback converter as a high-power-factor off-line power supply. IEEE Trans. Ind. Electron. 55(3), 1090–1100 (2008)CrossRefGoogle Scholar
  3. 3.
    B. Amelifard, M. Pedram, Optimal design of the power-delivery network for multiple voltage-island system-on-chips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(6), 888–900 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Andersen, F. Krismer, J. Kolar, T. Toifl, C. Menolfi, L. Kull, T. Morf, M. Kossel, M. Brandli, P. Buchmann, P. Francese, A 4.6W/mm2 power density 86% efficiency on-chip switched capacitor DC-DC converter in 32 nm SOI CMOS, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 692–699Google Scholar
  5. 5.
    T. Andersen, F. Krismer, J. Kolar, T. Toifl, C. Menolfi, L. Kull, T. Morf, M. Kossel, M. Brandli, P. Buchmann, P. Francese, A deep trench capacitor based 2:1 and 3:2 reconfigurable on-chip switched capacitor DC-DC converter in 32 nm SOI CMOS, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 1448–1455Google Scholar
  6. 6.
    T. Andersen, F. Krismer, J. Kolar, T. Toifl, C. Menolfi, L. Kull, T. Morf, M. Kossel, M. Brandli, P. Buchmann, P. Francese, A sub-ns response on-chip switched-capacitor DC-DC voltage regulator delivering 3.7W/mm2 at 90% efficiency using deep-trench capacitors in 32 nm SOI CMOS, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2014), pp. 90–91Google Scholar
  7. 7.
    T. Andersen, F. Krismer, J. Kolar, T. Toifl, C. Menolfi, L. Kuli, T. Morf, M. Kossel, M. Brandii, P. Francese, A feedforward controlled on-chip switched-capacitor voltage regulator delivering 10 W in 32 nm SOI CMOS, in 2015 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2015), pp. 362–363Google Scholar
  8. 8.
    A.-J. Annema, G.J.G.M. Geelen, P.C. de Jong, 5.5-V I/O in a 2.5-V 0.25 μm CMOS technology. IEEE J. Solid State Circuits 36(3), 528–538 (2001)Google Scholar
  9. 9.
    S. Ben-Yaakov, On the influence of switch resistances on switched-capacitor converter losses. IEEE Trans. Ind. Electron. 59(1), 638–640 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Bergveld, K. Nowak, R. Karadi, S. Iochem, J. Ferreira, S. Ledain, E. Pieraerts, M. Pommier, A 65-nm-CMOS 100-MHz 87%-efficient DC-DC down converter based on dual-die system-in-package integration, in IEEE Energy Conversion Congress and Exposition, 2009 (ECCE 2009) (2009), pp. 3698–3705Google Scholar
  11. 11.
  12. 12.
    E. Burton, G. Schrom, F. Paillet, J. Douglas, W. Lambert, K. Radhakrishnan, M. Hill, Fully integrated voltage regulators on 4th generation intel®; coreTM SoCs, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 432–439Google Scholar
  13. 13.
    L. Chang, R.K. Montoye, B.L. Ji, A.J. Weger, K.G. Stawiasz, R.H. Dennard, A fully-integrated switched-capacitor 2:1 voltage converter with regulation capability and 90% efficiency at 2.3A/mm2, in Proceedings of Symposium on VLSI Circuits (2010), pp. 55–56Google Scholar
  14. 14.
    P.-H. Chen, C.-S. Wu, K.-C. Lin, A 50nW-to-10mW output power tri-mode digital buck converter with self-tracking zero current detection for photovoltaic energy harvesting, in Solid- State Circuits Conference - (ISSCC) (2015), pp. 1–3Google Scholar
  15. 15.
    J. Daggle, Postmortem analysis of power grid blackouts: the role of measurement systems. IEEE Power Energ. Mag. 4(5), 30–35 (2006)CrossRefGoogle Scholar
  16. 16.
    V. De, Energy efficient computing in nanoscale CMOS: challenges and opportunities, in 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC) (2014), pp. 121–124Google Scholar
  17. 17.
    J.F. Dickson, On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid State Circuits 11(3), 374–378 (1976)CrossRefGoogle Scholar
  18. 18.
    dsPIC SMPS AC-DC Reference Design User Guide. Microchip. http://ww1.microchip.com/downloads/en/DeviceDoc/dsPICSMPS%20AC_DC%20Users%20Guide.pdf
  19. 19.
  20. 20.
    Electricity vampires: power use of appliances in off or standby mode. http://www.wwcccs.com/electricity-consumption/electricity-vampires/
  21. 21.
    D. El-Damak, S. Bandyopadhyay, A. Chandrakasan, A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2013), pp. 374–375Google Scholar
  22. 22.
    M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Ghaida, G. Torres, P. Gupta, Single-mask double-patterning lithography for reduced cost and improved overlay control. IEEE Trans. Semicond. Manuf. 24(1), 93–103 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Ghovanloo, K. Najafi, Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE J. Solid State Circuits 39(11), 1976–1984 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Gorlatova, J. Sarik, G. Grebla, M. Cong, I. Kymissis, G. Zussman, Movers and shakers: kinetic energy harvesting for the internet of things. IEEE J. Sel. Areas Commun. 33(8), 1624–1639 (2015)Google Scholar
  26. 26.
    D. Griffith, P. Roine, J. Murdock, R. Smith, A 190nW 33kHz RC oscillator with ±0.21% temperature stability and 4 ppm long-term stability, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2014), pp. 300–301Google Scholar
  27. 27.
    R. Guo, Z. Liang, A.Q. Huang, A family of multimodes charge pump based DC-DC converter with high efficiency over wide input and output range. IEEE Trans. Power Electron. 27(11), 4788–4798 (2012)CrossRefGoogle Scholar
  28. 28.
    J.M. Henry, J.W. Kimball, Switched-capacitor converter state model generator. IEEE Trans. Power Electron. 27(5), 2415–2425 (2012)CrossRefGoogle Scholar
  29. 29.
    Intersil, Milpitas, California, Wide V IN 150 mA Synchronous Buck Regulator (2014) ISL85412Google Scholar
  30. 30.
    V.V. Ivanov, I.M. Filanovsky, Operational Amplifier Speed and Accuracy Improvement: Analog Circuit Design with Structural Methodology (Kluwer, Dordrecht, 2004)Google Scholar
  31. 31.
    R. Jain, B. Geuskens, S. Kim, M. Khellah, J. Kulkarni, J. Tschanz, V. De, A 0.45–1 V fully-integrated distributed switched capacitor DC-DC converter with high density MIM capacitor in 22 nm tri-gate CMOS. IEEE J. Solid State Circuits 49(4), 917–927 (2014)Google Scholar
  32. 32.
    R. Jevtic, H.-P. Le, M. Blagojevic, S. Bailey, K. Asanovic, E. Alon, B. Nikolic, Per-core DVFS with switched-capacitor converters for energy efficiency in manycore processors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23(4), 723–730 (2015)CrossRefGoogle Scholar
  33. 33.
    R. Karadi, Synthesis of switched-capacitor power converters: An iterative algorithm, in 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL) (2015), pp. 1–4Google Scholar
  34. 34.
    R. Karadi, G. Villar Piqué, 3-phase 6/1 Switched-Capacitor DC-DC boost converter providing 16 V at 7 mA and 70.3% efficiency in 1.1 mm3, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2014), pp. 92–93Google Scholar
  35. 35.
    K. Kesarwani, R. Sangwan, J. Stauth, Resonant-switched capacitor converters for chip-scale power delivery: design and implementation. IEEE Trans. Power Electron. 30(12), 6966–6977 (2015)CrossRefGoogle Scholar
  36. 36.
    W. Kim, D. Brooks, G. Yeon Wei, A fully-integrated 3-level DC-DC converter for nanosecond-scale DVFS. IEEE J. Solid State Circuits 47(1), 206–219 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Kim, Y.-C. Shih, K. Mazumdar, R. Jain, J. Ryan, C. Tokunaga, C. Augustine, J. Kulkarni, K. Ravichandran, J. Tschanz, M. Khellah, V. De, Enabling wide autonomous DVFS in a 22 nm graphics execution core using a digitally controlled hybrid LDO/switched-capacitor VR with fast droop mitigation, in 2015 IEEE International Solid- State Circuits Conference - (ISSCC) (2015), pp. 1–3Google Scholar
  38. 38.
    S. Kose, E.G. Friedman, Effective resistance of a two layer mesh. IEEE Trans. Circuits Syst. Express Briefs 58(11), 739–743 (2011)CrossRefGoogle Scholar
  39. 39.
    V. Kursun, S. Narendra, V. De, E. Friedman, Analysis of buck converters for on-chip integration with a dual supply voltage microprocessor. IEEE Trans. Very Large Scale Integr. VLSI Syst. 11(3), 514–522 (2003)CrossRefGoogle Scholar
  40. 40.
    Lawrence Berkeley National Laboratory Standby Power Survey. http://standby.lbl.gov/
  41. 41.
    H.-P. Le, M. Seeman, S.R. Sanders, V. Sathe, S. Naffziger, E. Alon, A 32 nm fully integrated reconfigurable switched-capacitor DC-DC converter delivering 0.55W/mm2 at 81% efficiency, in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2010), pp. 210–211Google Scholar
  42. 42.
    H.-P. Le, S.R. Sanders, E. Alon, Design techniques for fully integrated switched-capacitor DC-DC converters. IEEE J. Solid State Circuits 46(9), 2120–2131 (2011)CrossRefGoogle Scholar
  43. 43.
    H.-P. Le, J. Crossley, S. Sanders, E. Alon, A sub-ns response fully integrated battery-connected switched-capacitor voltage regulator delivering 0.19 W/mm2 at 73% efficiency, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2013), pp. 372–373Google Scholar
  44. 44.
    S.K. Lee, T. Tong, X. Zhang, D. Brooks, G.-Y. Wei, A 16-core voltage-stacked system with an integrated switched-capacitor DC-DC converter, in 2015 Symposium on VLSI Circuits (2015)Google Scholar
  45. 45.
    Y. Lei, R. Pilawa-Podgurski, A general method for analyzing resonant and soft-charging operation of switched-capacitor converters. IEEE Trans. Power Electron. 30(10), 5650–5664 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Lei, R. May, R. Pilawa-Podgurski, Split-phase control: achieving complete soft-charging operation of a dickson switched-capacitor converter. IEEE Trans. Power Electron. 31(1), 770–782 (2016)CrossRefGoogle Scholar
  47. 47.
    H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, Efficient power management circuit: From thermal energy harvesting to above-IC microbattery energy storage. IEEE J. Solid State Circuits 43(1), 246–255 (2008)CrossRefGoogle Scholar
  48. 48.
    Linear Technology, Milpitas, California. High efficiency, high voltage 20mA synchronous step-down converter (2010) LTC3632Google Scholar
  49. 49.
    G. Maderbacher, T. Jackum, W. Pribyl, C. Sandner, Output stage topologies of DC-DC buck converters operating up to 5 V supply voltage in 65 nm CMOS, in 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2011), pp. 105–108Google Scholar
  50. 50.
    G. Maderbacher, S. Marsili, M. Motz, T. Jackum, J. Thielmann, H. Hassander, H. Gruber, F. Hus, C. Sandner, A digitally assisted single-point-calibration CMOS bandgap voltage reference with a 3σ inaccuracy of ±0.08% for fuel-gauge applications, in 2015 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2015), pp. 102–103Google Scholar
  51. 51.
    M. Madsen, A. Knott, M. Andersen, Low power very high frequency switch-mode power supply with 50 V input and 5 V output. IEEE Transactions on Power Electronics 29(12), 6569–6580 (2014)CrossRefGoogle Scholar
  52. 52.
    M. Makowski, On performance limits of switched-capacitor multi-phase charge pump circuits. Remarks on papers of Starzyk et al., in International Conference on Signals and Electronic Systems, 2008. ICSES ‘08 (2008), pp. 309–312Google Scholar
  53. 53.
    M.S. Makowski, D. Maksimovic, Performance limits of switched-capacitor DC-DC vonverters, in Proceedings of IEEE Power Electronics Specialists Conference (PESC), vol. 2 (1995), pp. 1215–1221Google Scholar
  54. 54.
    C.O. Mathuna, N. Wang, S. Kulkarni, R. Anthony, N. Cordero, J. Oliver, P. Alou, V. Svikovic, J.A. Cobos, J. Cortes, F. Neveu, C. Martin, B. Allard, F. Voiron, B. Knott, C. Sandner, G. Maderbacher, J. Pichler, M. Agostinelli, A. Anca, M. Breig, C.O. Mathuna, R. Anthony, Power supply with integrated passives - the EU FP7 powerswipe project, in 2014 8th International Conference on Integrated Power Systems (CIPS) (2014), pp. 1–7Google Scholar
  55. 55.
    Maxim Integrated, San Jose, California. 60 V, 50 mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter with 22 μA No-Load Supply Current (2014). MAX17551Google Scholar
  56. 56.
    H. Meyvaert, T. Van Breussegem, M. Steyaert, A monolithic 0.77 W/mm2 power dense capacitive DC-DC step-down converter in 90 nm Bulk CMOS, in 2011 Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (2011), pp. 483–486Google Scholar
  57. 57.
    H. Meyvaert, T. Van Breussegem, M. Steyaert, A 1.65 W fully integrated 90 nm bulk cmos capacitive DC-dc converter with intrinsic charge recycling. IEEE Trans. Power Electron. 28(9), 4327–4334 (2013)Google Scholar
  58. 58.
    H. Meyvaert, P. Smeets, M. Steyaert, A 265 V RMS mains interface integrated in 0.35 μm CMOS. IEEE J. Solid State Circuits 48(7), 1558–1564 (2013)Google Scholar
  59. 59.
    H. Meyvaert, M. Steyaert, A. Crouwels, S. Indevuyst, Monolithic power management front end with high voltage dense energy storage for wireless powering, in 2013 9th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2013), pp. 277–280Google Scholar
  60. 60.
    H. Meyvaert, A. Sarafianos, N. Butzen, M. Steyaert, Monolithic switched-capacitor DC-DC towards high voltage conversion ratios, in 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL) (2014), pp. 1–5Google Scholar
  61. 61.
    H. Meyvaert, G. Villar Piqué, R. Karadi, H. Bergveld, M. Steyaert, A light-load-efficient 11/1 switched-capacitor DC-DC converter with 94.7% efficiency while delivering 100 mW at 3.3 V. IEEE J. Solid State Circuits 50(12), 2849–2860 (2015)Google Scholar
  62. 62.
    H. Meyvaert, G. Villar Piqué, R. Karadi, H.J. Bergveld, M. Steyaert, A light-load-efficient 11/1 switched-capacitor DC-DC converter with 94.7% efficiency while delivering 100 mW at 3.3 V, in 2015 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2015), pp. 358–359Google Scholar
  63. 63.
    A.V. Mezhiba, E.G. Friedman, Impedance characteristics of power distribution grids in nanoscale integrated circuits. IEEE Trans. Very Large Scale Integr. VLSI Syst. 12(11), 1148–1155 (2004)CrossRefGoogle Scholar
  64. 64.
    R. Middlebrook, Transformerless DC-to-DC converters with large conversion ratios. IEEE Trans. Power Electron. 3(4), 484–488 (1988)CrossRefGoogle Scholar
  65. 65.
    P. Mixon, Technical origins of 60 Hz as the standard AC frequency in North America. IEEE Power Eng. Rev. 19(3), 35–37 (1999)CrossRefGoogle Scholar
  66. 66.
    Murata GRM188R61E106MA73#: MLCC 0603 SMD capacitor, 10 μF(+/-20%), 25 V, X5RGoogle Scholar
  67. 67.
    V. Ng, S. Sanders, A 92%-efficiency wide-input-voltage-range switched-capacitor dc-dc converter, in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 282–284Google Scholar
  68. 68.
    V. Ng, S. Sanders, A high-efficiency wide-input-voltage range switched capacitor point-of-load DC-DC converter. IEEE Trans. Power Electron. 28(9), 4335–4341 (2013)CrossRefGoogle Scholar
  69. 69.
    V. Ng, M. Seeman, S. Sanders, High-efficiency, 12 V-to-1.5 V DC-DC converter realized with switched-capacitor architecture, in 2009 Symposium on VLSI Circuits (2009), pp. 168–169Google Scholar
  70. 70.
    V.W. Ng, M.D. Seeman, S.R. Sanders, Minimum PCB footprint point-of-load DC-DC converter realized with switched-capacitor architecture, in Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE) (2009), pp. 1575–1581Google Scholar
  71. 71.
    L. Ni, D.J. Patterson, J.L. Hudgins, High power current sensorless bidirectional 16-phase interleaved DC-DC converter for hybrid vehicle application. IEEE Trans. Power Electron. 27(3), 1141–1151 (2012)CrossRefGoogle Scholar
  72. 72.
    E. Owen, The origins of 60-Hz as a power frequency. IEEE Ind. Appl. Mag. 3(6), 8, 10, 12–14 (1997)Google Scholar
  73. 73.
    M. Pomper, L. Leipold, R. Muller, R. Weidlich, On-chip power supply for 110 V line input. IEEE J. Solid State Circuits 13(6), 882–886 (1978)CrossRefGoogle Scholar
  74. 74.
    R. Pilawa-Podgurski, Scalable series-stacked power delivery architectures for improved efficiency and reduced supply current, in International Power Supply on Chip Workshop (PowerSoC), Boston (2014)Google Scholar
  75. 75.
    R. Pilawa-Podgurski, D. Perreault, Merged two-stage power converter with soft charging switched-capacitor stage in 180 nm CMOS. IEEE J. Solid State Circuits 47(7), 1557–1567 (2012)CrossRefGoogle Scholar
  76. 76.
    Pulling the plug on standby power. (2006) http://www.economist.com/node/5571582
  77. 77.
    S. Rajapandian, Z. Xu, K. Shepard, Energy-efficient low-voltage operation of digital CMOS circuits through charge-recycling, in 2004 Symposium on VLSI Circuits (2004), pp. 330–333Google Scholar
  78. 78.
    S. Rajapandian, Z. Xu, K.L. Shepard, Implicit DC-DC downconversion through charge-recycling. IEEE J. Solid State Circuits 40(4), 846–852 (2005)CrossRefGoogle Scholar
  79. 79.
    Y. Ramadass, A. Chandrakasan, Energy processing circuits for low-power applications, Ph.D. thesis, Massachusetts Institute of Technology (2009)Google Scholar
  80. 80.
    Y.K. Ramadass, A.A. Fayed, A.P. Chandrakasan, A fully-integrated switched-capacitor step-down DC-DC converter with digital capacitance modulation in 45 nm CMOS. IEEE J. Solid State Circuits 45(12), 2557–2565 (2010)CrossRefGoogle Scholar
  81. 81.
    R. Redl, L. Balogh, N. Sokal, A new family of single-stage isolated power-factor correctors with fast regulation of the output voltage, in 25th Annual IEEE Power Electronics Specialists Conference, PESC ‘94 Record (1994), pp. 1137–1144Google Scholar
  82. 82.
    J. Rodriguez, K. Remack, J. Gertas, L. Wang, C. Zhou, K. Boku, J. Rodriguez-Latorre, K. Udayakumar, S. Summerfelt, T. Moise, D. Kim, J. Groat, J. Eliason, M. Depner, F. Chu, Reliability of Ferroelectric Random Access memory embedded within 130 nm CMOS, in 2010 IEEE International Reliability Physics Symposium (IRPS) (2010), pp. 750–758Google Scholar
  83. 83.
    L. Salem, P. Mercier, A 45-ratio recursively sliced series-parallel switched-capacitor DC-DC converter achieving 86% efficiency, in 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC) (2014), pp. 1–4Google Scholar
  84. 84.
    L. Salem, P. Mercier, A recursive switched-capacitor dc-dc converter achieving ratios with high efficiency over a wide output voltage range. IEEE J. Solid State Circuits 49(12), 2773–2787 (2014)CrossRefGoogle Scholar
  85. 85.
    L. Salem, P. Mercier, An 85%-efficiency fully integrated 15-ratio recursive switched-capacitor DC-DC converter with 0.1-to-2.2 V output voltage range, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2014), pp. 88–89Google Scholar
  86. 86.
    S. Sanders, E. Alon, H.-P. Le, M. Seeman, M. John, V. Ng, The road to fully integrated DC–DC conversion via the switched-capacitor approach. IEEE Trans. Power Electron. 28(9), 4146–4155 (2013)CrossRefGoogle Scholar
  87. 87.
    A. Sarafianos, M. Steyaert, Fully integrated wide input voltage range capacitive DC-DC converters: the folding Dickson converter. IEEE J. Solid State Circuits 50(7), 1560–1570 (2015)CrossRefGoogle Scholar
  88. 88.
    C. Schaef, K. Kesarwani, J. Stauth, A variable-conversion-ratio 3-phase resonant switched capacitor converter with 85% efficiency at 0.91 W/mm2 using 1.1nH PCB-trace inductors, in 2015 IEEE International Solid- State Circuits Conference - (ISSCC) (2015), pp. 1–3Google Scholar
  89. 89.
    G. Schrom, P. Hazucha, J.-H. Hahn, V. Kursun, D. Gardner, S. Narendra, T. Karnik, V. De, Feasibility of monolithic and 3D-stacked DC-DC converters for microprocessors in 90 nm technology generation, in Proceedings of the 2004 International Symposium on Low Power Electronics and Design, 2004. ISLPED ‘04 (2004), pp. 263–268Google Scholar
  90. 90.
    M.D. Seeman, S.R. Sanders, Analysis and optimization of switched-capacitor DC-DC converters. IEEE Trans. Power Electron. 23(2), 841–851 (2008)CrossRefGoogle Scholar
  91. 91.
    M. Seeman, V. Ng, H.-P. Le, M. John, E. Alon, S. Sanders, A comparative analysis of Switched-Capacitor and inductor-based DC-DC conversion technologies, in 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL) (2010), pp. 1–7Google Scholar
  92. 92.
    B. Serneels, T. Piessens, M. Stepert, W. Dehaene, A high-voltage output driver in a standard 2.5 V 0.25 μm CMOS technology, in 2004 IEEE International Proceedings of Digest of Technical Papers Solid-State Circuits Conference ISSCC (2004), pp. 146–518Google Scholar
  93. 93.
    B. Serneels, T. Piessens, M. Steyaert, W. Dehaene, A high-voltage output driver in a 2.5-V 0.25-μm CMOS technology. IEEE J. Solid State Circuits 40(3), 576–583 (2005)Google Scholar
  94. 94.
    B. Serneels, M. Steyaert, W. Dehaene, A 5.5 V SOPA line driver in a standard 1.2 V 0.13 μm CMOS technology, in 2005 Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (2005), pp. 303–306Google Scholar
  95. 95.
    B. Serneels, M. Steyaert, W. Dehaene, A high speed, low voltage to high voltage level shifter in standard 1.2 V 0.13μm CMOS, in Proceedings of IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2006), pp. 668–671Google Scholar
  96. 96.
    B. Serneels, E. Geukens, B. De Muer, T. Piessens, A 1.5W 10 V-output Class-D amplifier using a boosted supply from a single 3.3V input in standard 1.8 V/3.3 V 0.18 μm CMOS, in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 94–96Google Scholar
  97. 97.
    P.S. Shenoy, P.T. Krein, Differential power processing for DC systems. IEEE Trans. Power Electron. 28(4), 1795–1806 (2013)CrossRefGoogle Scholar
  98. 98.
    P. Shenoy, S. Zhang, R. Abdallah, P. Krein, N. Shanbhag, Overcoming the power wall: connecting voltage domains in series, in 2011 International Conference on Energy Aware Computing (ICEAC) (2011), pp. 1–6Google Scholar
  99. 99.
    P. Shenoy, M. Amaro, D. Freeman, J. Morroni, Comparison of a 12 V, 10 A, 3 MHz buck converter and a series capacitor buck converter, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 461–468Google Scholar
  100. 100.
    D. Somasekhar, B. Srinivasan, G. Pandya, F. Hamzaoglu, M. Khellah, T. Karnik, K. Zhang, Multi-phase 1 GHz voltage doubler charge-pump in 32 nm logic process, in 2009 Symposium on VLSI Circuits (2009), pp. 196–197Google Scholar
  101. 101.
    D. Somasekhar, B. Srinivasan, G. Pandya, F. Hamzaoglu, M. Khellah, T. Karnik, K. Zhang, Multi-phase 1 GHz voltage doubler charge pump in 32 nm logic process. IEEE J. Solid State Circuits 45(4), 751–758 (2010)CrossRefGoogle Scholar
  102. 102.
    M. Steyaert, P. Vancorenland, CMOS: a paradigm for low power wireless? in Proceedings of 39th Design Automation Conference (2002), pp. 836–841Google Scholar
  103. 103.
    M. Steyaert, T. Van Breussegem, H. Meyvaert, P. Callemeyn, M. Wens, DC-dc converters: from discrete towards fully integrated CMOS, in 2011 Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (2011), pp. 42–49Google Scholar
  104. 104.
    M. Steyaert, F. Tavernier, H. Meyvaert, A. Sarafianos, N. Butzen, When hardware is free, power is expensive! Is integrated power management the solution? in 2015 Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (2015), pp. 26–34Google Scholar
  105. 105.
    L. Su, D. Ma, Monolithic reconfigurable SC power converter with adaptive gain control and on-chip capacitor sizing, in Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE) (2010), pp. 2713–2717Google Scholar
  106. 106.
    A.A. Tamez, J.A. Fredenburg, M.P. Flynn, An integrated 120 volt ac mains voltage interface in standard 130 nm cmos, in 2010 Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (2010), pp. 238–241Google Scholar
  107. 107.
    B. Tar, U. Cilingiroglu, Nanowatt-scale power management for on-chip photovoltaic energy harvesting beacons. IEEE J. Emerging Sel. Top. Circuits Syst. 4(3), 284–291 (2014)CrossRefGoogle Scholar
  108. 108.
    Texas Instruments, Dallas, Texas. 4.7-V to 60-V Input, 50-mA Synchronous Step-Down Converter With Low IQ (2011). TPS54062Google Scholar
  109. 109.
    The international energy agency. http://www.iea.org/
  110. 110.
    The international technology roadmap for semiconductors (2009). public.itrs.net.Google Scholar
  111. 111.
    Timedomain CVD Inc. silicon dioxide: properties and applications. http://www.timedomaincvd.com/CVD_Fundamentals/films/SiO2_properties.html/
  112. 112.
    United states environmental protection agency. http://www.epa.gov/
  113. 113.
    T. Van Breussegem, M. Steyaert, A 82% efficiency 0.5% ripple 16-phase fully integrated capacitive voltage doubler, in 2009 Symposium on VLSI Circuits (2009), pp. 198–199Google Scholar
  114. 114.
    T.M. Van Breussegem, M.S.J. Steyaert, Compact low swing gearbox-type integrated capacitive DC/DC converter. Electron. Lett. 46(13), 892–894 (2010)CrossRefGoogle Scholar
  115. 115.
    T.M. Van Breussegem, M.S.J. Steyaert, Monolithic capacitive DC-DC converter with single boundary-multiphase control and voltage domain stacking in 90 nm CMOS. IEEE J. Solid State Circuits 46(7), 1715–1727 (2011)CrossRefGoogle Scholar
  116. 116.
    T. Van Breussegem, M. Steyaert, Accuracy improvement of the output impedance model for capacitive down-converters. Analog Integr. Circ. Sig. Process 72(1), 271–277 (2012)CrossRefGoogle Scholar
  117. 117.
    T. Van Breussegem, M. Wens, J.-M. Redoute, E. Geukens, D. Geys, M. Steyaert, A DMOS integrated 320mW capacitive 12 V to 70 V DC/DC-converter for LIDAR applications, in Proceedings of IEEE Energy Conversion Congress and Exposition ECCE 2009 (2009), pp. 3865–3869Google Scholar
  118. 118.
    C. van Liempd, S. Stanzione, Y. Allasasmeh, C. Van Hoof, A 1 μW-to-1 mW energy-aware interface IC for piezoelectric harvesting with 40nA quiescent current and zero-bias active rectifiers, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2013), pp. 76–77Google Scholar
  119. 119.
    G. Villar Piqué, A 41-phase switched-capacitor power converter with 3.8 mV output ripple and 81% efficiency in baseline 90 nm CMOS, in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 98–100Google Scholar
  120. 120.
    G. Villar Piqué, E. Alarcon, Monolithic integration of a 3-level DCM-operated low-floating-capacitor buck converter for DC-DC step-down donversion in standard CMOS, in IEEE Power Electronics Specialists Conference, 2008. PESC 2008 (2008), pp. 4229–4235Google Scholar
  121. 121.
    G. Villar Piqué, H. Bergveld, E. Alarcon, Survey and benchmark of fully integrated switching power converters: switched-capacitor versus inductive approach. IEEE Trans. Power Electron. 28(9), 4156–4167 (2013)CrossRefGoogle Scholar
  122. 122.
    G. Villar Piqué, H.J. Bergveld, R. Karadi, A 1W 8-ratio switched-capacitor boost power converter in 140 nm CMOS with 94.5% efficiency, 0.5 mm thickness and 8.1mm2 PCB area, in 2015 Symposium on VLSI Circuits (2015)Google Scholar
  123. 123.
    F. Waldron, R. Foley, J. Slowey, A. Alderman, B. Narveson, S. Mathuna, Technology roadmapping for power supply in package (PSiP) and power supply on chip (PwrSoC). IEEE Trans. Power Electron. 28(9), 4137–4145 (2013)CrossRefGoogle Scholar
  124. 124.
    G. Wang et al., Scaling deep trench based eDRAM on SOI to 32 nm and Beyond, in 2009 IEEE International Electron Devices Meeting (IEDM) (2009), pp. 259–262Google Scholar
  125. 125.
    M. Wens, M. Steyaert, A fully integrated CMOS 800-mW four-phase semiconstant ON/OFF-time step-down converter. IEEE Trans. Power Electron. 26(2), 326–333 (2011)CrossRefGoogle Scholar
  126. 126.
    J. Wibben, R. Harjani, A high-efficiency DC-DC converter using 2 nH integrated inductors. IEEE J. Solid State Circuits 43(4), 844–854 (2008)CrossRefGoogle Scholar
  127. 127.
  128. 128.
    L. Xue, C. Dougherty, R. Bashirullah, 50–100 MHz, 8x step-up DC-dc converters in 130 nm 1.2 V digital CMOS, in 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2011), pp. 892–896Google Scholar
  129. 129.
    B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, The limit of dynamic voltage scaling and insomniac dynamic voltage scaling. IEEE Trans. Very Large Scale Integr. VLSI Syst. 13(11), 1239–1252 (2005)CrossRefGoogle Scholar
  130. 130.
    B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtic, B. Keller, S. Bailey, M. Blagojevic, P.-F. Chiu, H.-P. Le, P.-H. Chen, N. Sutardja, R. Avizienis, A. Waterman, B. Richards, P. Flatresse, E. Alon, K. Asanovic, B. Nikolic, A RISC-V vector processor with tightly-integrated switched-capacitor DC-DC converters in 28 nm FDSOI, in 2015 Symposium on VLSI Circuits (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hans Meyvaert
    • 1
  • Michiel Steyaert
    • 2
  1. 1.Kessel-LoBelgium
  2. 2.LeuvenBelgium

Personalised recommendations