# Switched-Capacitor DC–DC in Bulk CMOS for On-Chip Power Granularization

- 642 Downloads

## Abstract

Recent trends show that the power management unit (PMU) to supply System-on-Chip solutions is undergoing a transformation and is taking a leap toward monolithic integration [31, 39, 130]. This is a necessary evolution because of multiple market requirements. On the one hand, modern electronic systems are forced to be more energy efficient. This can follow from constraints on heat dissipation, where lower losses result in a lower overall dissipated heat, or to increase the battery autonomy in mobile systems. On the other hand, monolithic integration enables to reduce the form factor of power converters, saving on the required PCB board space. On top of that, the solution thickness can be reduced [122], which has become an important differentiation in modern high-end smartphones. In order to improve system efficiency and form factor reduction, these systems frequently rely on energy saving techniques, such as Adaptive Voltage Scaling (AVS), Dynamic Voltage Scaling (DVS), Dynamic Frequency Scaling (DFS), power and clock gating to realize (deep, etc.) sleep, multiple supply voltages with voltage islands and power domains, and so on. Consequently, the step toward integrated power conversion is a key enabler for the aforementioned techniques because it allows power delivery to take place via a distributed or granular concept, yielding the possibility of many voltage domains. In fact, once power converters are integrated on chip, the concept of having one centralized power converter becomes obsolete. There is no longer a reason to keep the power converter in one place besides tradition, which is not a rational motivation and leads to bad circuit design [30].

## Keywords

Switching Frequency Output Impedance Dynamic Voltage Scaling Voltage Ripple Parasitic Capacitor## References

- 9.S. Ben-Yaakov, On the influence of switch resistances on switched-capacitor converter losses. IEEE Trans. Ind. Electron.
**59**(1), 638–640 (2012)CrossRefGoogle Scholar - 10.H. Bergveld, K. Nowak, R. Karadi, S. Iochem, J. Ferreira, S. Ledain, E. Pieraerts, M. Pommier, A 65-nm-CMOS 100-MHz 87%-efficient DC-DC down converter based on dual-die system-in-package integration, in
*IEEE Energy Conversion Congress and Exposition, 2009 (ECCE 2009)*(2009), pp. 3698–3705Google Scholar - 13.L. Chang, R.K. Montoye, B.L. Ji, A.J. Weger, K.G. Stawiasz, R.H. Dennard, A fully-integrated switched-capacitor 2:1 voltage converter with regulation capability and 90% efficiency at 2.3A/mm
^{2}, in*Proceedings of Symposium on VLSI Circuits*(2010), pp. 55–56Google Scholar - 17.J.F. Dickson, On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid State Circuits
**11**(3), 374–378 (1976)CrossRefGoogle Scholar - 23.R. Ghaida, G. Torres, P. Gupta, Single-mask double-patterning lithography for reduced cost and improved overlay control. IEEE Trans. Semicond. Manuf.
**24**(1), 93–103 (2011)CrossRefGoogle Scholar - 27.R. Guo, Z. Liang, A.Q. Huang, A family of multimodes charge pump based DC-DC converter with high efficiency over wide input and output range. IEEE Trans. Power Electron.
**27**(11), 4788–4798 (2012)CrossRefGoogle Scholar - 28.J.M. Henry, J.W. Kimball, Switched-capacitor converter state model generator. IEEE Trans. Power Electron.
**27**(5), 2415–2425 (2012)CrossRefGoogle Scholar - 30.V.V. Ivanov, I.M. Filanovsky, Operational Amplifier Speed and Accuracy Improvement: Analog Circuit Design with Structural Methodology (Kluwer, Dordrecht, 2004)Google Scholar
- 31.R. Jain, B. Geuskens, S. Kim, M. Khellah, J. Kulkarni, J. Tschanz, V. De, A 0.45–1 V fully-integrated distributed switched capacitor DC-DC converter with high density MIM capacitor in 22 nm tri-gate CMOS. IEEE J. Solid State Circuits
**49**(4), 917–927 (2014)Google Scholar - 38.S. Kose, E.G. Friedman, Effective resistance of a two layer mesh. IEEE Trans. Circuits Syst. Express Briefs
**58**(11), 739–743 (2011)CrossRefGoogle Scholar - 39.V. Kursun, S. Narendra, V. De, E. Friedman, Analysis of buck converters for on-chip integration with a dual supply voltage microprocessor. IEEE Trans. Very Large Scale Integr. VLSI Syst.
**11**(3), 514–522 (2003)CrossRefGoogle Scholar - 41.H.-P. Le, M. Seeman, S.R. Sanders, V. Sathe, S. Naffziger, E. Alon, A 32 nm fully integrated reconfigurable switched-capacitor DC-DC converter delivering 0.55W/mm
^{2}at 81% efficiency, in*Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*(2010), pp. 210–211Google Scholar - 42.H.-P. Le, S.R. Sanders, E. Alon, Design techniques for fully integrated switched-capacitor DC-DC converters. IEEE J. Solid State Circuits
**46**(9), 2120–2131 (2011)CrossRefGoogle Scholar - 43.H.-P. Le, J. Crossley, S. Sanders, E. Alon, A sub-ns response fully integrated battery-connected switched-capacitor voltage regulator delivering 0.19 W/mm
^{2}at 73% efficiency, in*2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*(2013), pp. 372–373Google Scholar - 53.M.S. Makowski, D. Maksimovic, Performance limits of switched-capacitor DC-DC vonverters, in
*Proceedings of IEEE Power Electronics Specialists Conference (PESC)*, vol. 2 (1995), pp. 1215–1221Google Scholar - 56.H. Meyvaert, T. Van Breussegem, M. Steyaert, A monolithic 0.77 W/mm
^{2}power dense capacitive DC-DC step-down converter in 90 nm Bulk CMOS, in*2011 Proceedings of the European Solid-State Circuits Conference (ESSCIRC)*(2011), pp. 483–486Google Scholar - 63.A.V. Mezhiba, E.G. Friedman, Impedance characteristics of power distribution grids in nanoscale integrated circuits. IEEE Trans. Very Large Scale Integr. VLSI Syst.
**12**(11), 1148–1155 (2004)CrossRefGoogle Scholar - 70.V.W. Ng, M.D. Seeman, S.R. Sanders, Minimum PCB footprint point-of-load DC-DC converter realized with switched-capacitor architecture, in
*Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE)*(2009), pp. 1575–1581Google Scholar - 71.L. Ni, D.J. Patterson, J.L. Hudgins, High power current sensorless bidirectional 16-phase interleaved DC-DC converter for hybrid vehicle application. IEEE Trans. Power Electron.
**27**(3), 1141–1151 (2012)CrossRefGoogle Scholar - 87.A. Sarafianos, M. Steyaert, Fully integrated wide input voltage range capacitive DC-DC converters: the folding Dickson converter. IEEE J. Solid State Circuits
**50**(7), 1560–1570 (2015)CrossRefGoogle Scholar - 90.M.D. Seeman, S.R. Sanders, Analysis and optimization of switched-capacitor DC-DC converters. IEEE Trans. Power Electron.
**23**(2), 841–851 (2008)CrossRefGoogle Scholar - 95.B. Serneels, M. Steyaert, W. Dehaene, A high speed, low voltage to high voltage level shifter in standard 1.2 V 0.13μm CMOS, in
*Proceedings of IEEE International Conference on Electronics, Circuits and Systems (ICECS)*(2006), pp. 668–671Google Scholar - 100.D. Somasekhar, B. Srinivasan, G. Pandya, F. Hamzaoglu, M. Khellah, T. Karnik, K. Zhang, Multi-phase 1 GHz voltage doubler charge-pump in 32 nm logic process, in
*2009 Symposium on VLSI Circuits*(2009), pp. 196–197Google Scholar - 101.D. Somasekhar, B. Srinivasan, G. Pandya, F. Hamzaoglu, M. Khellah, T. Karnik, K. Zhang, Multi-phase 1 GHz voltage doubler charge pump in 32 nm logic process. IEEE J. Solid State Circuits
**45**(4), 751–758 (2010)CrossRefGoogle Scholar - 102.M. Steyaert, P. Vancorenland, CMOS: a paradigm for low power wireless? in
*Proceedings of 39th Design Automation Conference*(2002), pp. 836–841Google Scholar - 105.L. Su, D. Ma, Monolithic reconfigurable SC power converter with adaptive gain control and on-chip capacitor sizing, in
*Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE)*(2010), pp. 2713–2717Google Scholar - 110.The international technology roadmap for semiconductors (2009). public.itrs.net.Google Scholar
- 113.T. Van Breussegem, M. Steyaert, A 82% efficiency 0.5% ripple 16-phase fully integrated capacitive voltage doubler, in
*2009 Symposium on VLSI Circuits*(2009), pp. 198–199Google Scholar - 115.T.M. Van Breussegem, M.S.J. Steyaert, Monolithic capacitive DC-DC converter with single boundary-multiphase control and voltage domain stacking in 90 nm CMOS. IEEE J. Solid State Circuits
**46**(7), 1715–1727 (2011)CrossRefGoogle Scholar - 116.T. Van Breussegem, M. Steyaert, Accuracy improvement of the output impedance model for capacitive down-converters. Analog Integr. Circ. Sig. Process
**72**(1), 271–277 (2012)CrossRefGoogle Scholar - 119.G. Villar Piqué, A 41-phase switched-capacitor power converter with 3.8 mV output ripple and 81% efficiency in baseline 90 nm CMOS, in
*Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*(2012), pp. 98–100Google Scholar - 122.G. Villar Piqué, H.J. Bergveld, R. Karadi, A 1W 8-ratio switched-capacitor boost power converter in 140 nm CMOS with 94.5% efficiency, 0.5 mm thickness and 8.1mm
^{2}PCB area, in*2015 Symposium on VLSI Circuits*(2015)Google Scholar - 125.M. Wens, M. Steyaert, A fully integrated CMOS 800-mW four-phase semiconstant ON/OFF-time step-down converter. IEEE Trans. Power Electron.
**26**(2), 326–333 (2011)CrossRefGoogle Scholar - 126.J. Wibben, R. Harjani, A high-efficiency DC-DC converter using 2 nH integrated inductors. IEEE J. Solid State Circuits
**43**(4), 844–854 (2008)CrossRefGoogle Scholar - 129.B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, The limit of dynamic voltage scaling and insomniac dynamic voltage scaling. IEEE Trans. Very Large Scale Integr. VLSI Syst.
**13**(11), 1239–1252 (2005)CrossRefGoogle Scholar - 130.B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtic, B. Keller, S. Bailey, M. Blagojevic, P.-F. Chiu, H.-P. Le, P.-H. Chen, N. Sutardja, R. Avizienis, A. Waterman, B. Richards, P. Flatresse, E. Alon, K. Asanovic, B. Nikolic, A RISC-V vector processor with tightly-integrated switched-capacitor DC-DC converters in 28 nm FDSOI, in
*2015 Symposium on VLSI Circuits*(2015)Google Scholar