Skip to main content

On Combinatorial Optimisation in Analysis of Protein-Protein Interaction and Protein Folding Networks

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9597))

Included in the following conference series:

Abstract

Protein-protein interaction networks and protein folding networks represent prominent research topics at the intersection of bioinformatics and network science. In this paper, we present a study of these networks from combinatorial optimisation point of view. Using a combination of classical heuristics and stochastic optimisation techniques, we were able to identify several interesting combinatorial properties of biological networks of the COSIN project. We obtained optimal or near-optimal solutions to maximum clique and chromatic number problems for these networks. We also explore patterns of both non-overlapping and overlapping cliques in these networks. Optimal or near-optimal solutions to partitioning of these networks into non-overlapping cliques and to maximum independent set problem were discovered. Maximal cliques are explored by enumerative techniques. Domination in these networks is briefly studied, too. Applications and extensions of our findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyer, F., Morgat, A., Labarre, L., Pothier, J., Viari, A.: Syntons, metabolons and interactons: an exact graph-theoretical approach for exploring neighbourhood between genomic and functional data. Bioinformatics 21(23), 4209–4215 (2005)

    Article  Google Scholar 

  2. Gao, L., Sun, P., Song, J.: Clustering algorithms for detecting functional modules in protein interaction networks. J. Bioinform. Comput. Biol. 7(1), 217–242 (2009)

    Article  Google Scholar 

  3. Cohen, J.: Bioinformatics - an introduction for computer scientists. ACM Comput. Surv. 36(2), 122–158 (2004)

    Article  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  5. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  6. COSIN: Coevolution and Self-organization in Dynamical Networks. http://www.cosinproject.org/

  7. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chalupa, D.: Construction of near-optimal vertex clique covering for real-world networks. Computing and Informatics (to appear)

    Google Scholar 

  9. Brélaz, D.: New methods to color vertices of a graph. Commun. ACM 22(4), 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In: Johnson, D.S., Trick, M. (eds.) Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, pp. 245–284. American Mathematical Society, RI (1995)

    Google Scholar 

  11. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Atias, N., Sharan, R.: Comparative analysis of protein networks: hard problems, practical solutions. Commun. ACM 55(5), 88–97 (2012)

    Article  Google Scholar 

  13. Kuchaiev, O., Stevanović, A., Hayes, W., Pržulj, N.: Graphcrunch 2: software tool for network modeling, alignment and clustering. BMC Bioinf. 12(1), 24 (2011)

    Article  Google Scholar 

  14. Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Jensen, C.R.L.J., Bastuck, S., Dümpelfeld, B., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)

    Article  Google Scholar 

  15. Zaki, N., Berengueres, J., Efimov, D.: Prorank: a method for detecting protein complexes. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 209–216. ACM (2012)

    Google Scholar 

  16. Li, X., Wu, M., Kwoh, C.K., Ng, S.K.: Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics 11(Suppl. 1), S3 (2010)

    Article  Google Scholar 

  17. Pizzuti, C., Rombo, S.E., Marchiori, E.: Complex detection in protein-protein interaction networks: a compact overview for researchers and practitioners. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 211–223. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Pizzuti, C., Rombo, S.E.: Algorithms and tools for protein-protein interaction networks clustering, with a special focus on population-based stochastic methods. Bioinformatics 30(10), 1343–1352 (2014)

    Article  Google Scholar 

  19. Becker, E., Robisson, B., Chapple, C.E., Guénoche, A., Brun, C.: Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28(1), 84–90 (2006)

    Article  Google Scholar 

  20. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2012)

    Article  Google Scholar 

  21. Li, X.L., Tan, S.H., Foo, C.S., Ng, S.K.: Interaction graph mining for protein complexes using local clique merging. Genome Inf. 16(2), 260–269 (2005)

    Google Scholar 

  22. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cho, Y.R., Hwang, W., Zhang, A.: Identification of overlapping functional modules in protein interaction networks: information flow-based approach. In: Sixth IEEE International Conference on Data Mining Workshops, ICDM Workshops 2006, pp. 147–152 (2006)

    Google Scholar 

  24. Hawick, K.A.: Applying enumerative, spectral and hybrid graph analyses to biological network data. In: International Conference on Computational Intelligence and Bioinformatics (CIB 2011), pp. 89–96. IASTED, Pittsburgh, USA, 7–9 November 2011

    Google Scholar 

  25. Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: sparse graph mining with compact matrix decomposition. Stat. Anal. Data Min. 1(1), 6–22 (2008)

    Article  MathSciNet  Google Scholar 

  26. King, A.D., Pržulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)

    Article  Google Scholar 

  27. Pizzuti, C., Rombo, S.E.: Experimental evaluation of topological-based fitness functions to detect complexes in PPI networks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 193–200. ACM (2012)

    Google Scholar 

  28. Pizzuti, C., Rombo, S.E.: A coclustering approach for mining large protein-protein interaction networks. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 9(3), 717–730 (2012)

    Article  Google Scholar 

  29. Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In Rappa, M., Jones, P., Freire, J., Chakrabarti, S. (eds.) Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 631–640. ACM, New York, NY (2010)

    Google Scholar 

  30. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012)

    Article  Google Scholar 

  31. Brohee, S., Helden, J.V.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinf. 7(1), 488 (2006)

    Article  Google Scholar 

  32. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Šíma, J., Schaeffer, S.E.: On the NP-completeness of some graph cluster measures. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 530–537. Springer, Heidelberg (2006)

    Google Scholar 

  34. Rao, F., Caflisch, A.: The protein folding network. J. Mol. Biol. 342(1), 299–306 (2004)

    Article  Google Scholar 

  35. Hawick, K.A.: Centrality metrics for comparing protein-protein interaction networks with synthesized NK systems. In: Proceedings of the IASTED International Conference on Biomedical Engineering, pp. 1–8. IASTED, Zurich, Switzerland, 23–25 June 2014

    Google Scholar 

  36. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, Q., Hao, J.K.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 242(3), 693–709 (2015)

    Article  MathSciNet  Google Scholar 

  38. Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput. J. 10(1), 85–86 (1967)

    Article  MATH  Google Scholar 

  39. Galinier, P., Hamiez, J.-P., Hao, J.-K., Porumbel, D.: Recent advances in graph vertex coloring. In: Zelinka, I., Snasel, V., Abraham, A. (eds.) Handbook of Optimization: From Classical to Modern Approach. ISRL, vol. 38, pp. 505–528. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  40. Morgenstern, C.: Improved implementations of dynamic sequential coloring algorithms. Technical report CoSc-91-4, Department of Computer Science, Texas Christian University (1991)

    Google Scholar 

  41. Turner, J.S.: Almost all k-colorable graphs are easy to color. J. Algorithms 9(1), 63–82 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Culberson, J.C.: Iterated greedy graph coloring and the difficulty landscape. Technical report TR92-07, University of Alberta (1992)

    Google Scholar 

  43. Pavlopoulos, G.A., Secrier, M., Moschopoulos, C.N., Soldatos, T.G., Kossida, S., Aerts, J., Schneider, R., Bagos, P.G., et al.: Using graph theory to analyze biological networks. BioData Min. 4(10), 1–27 (2011)

    Google Scholar 

  44. Butland, G., Peregrín-Alvarez, J.M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., Krogan, N., Davey, M., Parkinson, J., Greenblatt, J., Emili, A.: Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005)

    Article  Google Scholar 

  45. UCLA: Database of Interacting Proteins. http://dip.doe-mbi.ucla.edu/dip/Main.cgi

  46. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  47. Kovács, I.A., Palotai, R., Szalay, M.S., Csermely, P.: Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PloS ONE 5(9), e12528 (2010)

    Article  Google Scholar 

  48. Potluri, A., Singh, A.: Two hybrid meta-heuristic approaches for minimum dominating set problem. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part II. LNCS, vol. 7077, pp. 97–104. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chalupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chalupa, D. (2016). On Combinatorial Optimisation in Analysis of Protein-Protein Interaction and Protein Folding Networks. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics