Population Based Ant Colony Optimization for Reconstructing ECG Signals

  • Yih-Chun Cheng
  • Tom Hartmann
  • Pei-Yun Tsai
  • Martin Middendorf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9597)


A population based ant optimization algorithm (PACO) for reconstructing electrocardiogram (ECG) signals is proposed in this paper. In particular, the PACO algorithm is used to find a subset of nonzero positions of a sparse wavelet domain ECG signal vector which is used for the reconstruction of a signal. The proposed PACO algorithm uses a time window for fixing certain decisions of the ants during the run of the algorithm. The optimization behaviour of the PACO is compared with two random search heuristics and several algorithms from the literature for ECG signal reconstruction. Experimental results are presented for ECG signals from the MIT-BIT Arrhythmia database. The results show that the proposed PACO reconstructs ECG signals very successfully.


Population based ACO ECG signals Signal reconstruction Subset selection problem 



YCC received financial support granted by German Academic Exchange Service (DAAD) through the Taiwan Summer Institute Programme within 57190416. TH was funded by the German Israeli Foundation (GIF) through the project “Novel gene order analysis methods based on pattern identification in gene interaction networks” within G-1051-407.4-2013.


  1. 1.
    Candes, E., Wakin, M.: An introduction to compressive sampling. Sig. Process. Mag. IEEE 25(2), 21–30 (2008)CrossRefGoogle Scholar
  2. 2.
    Craven, D., McGinley, B., Kilmartin, L., Glavin, M., Jones, E.: Compressed sensing for bioelectric signals: a review. IEEE J. Biomed. Health Inform. 19(2), 529–540 (2015)CrossRefGoogle Scholar
  3. 3.
    Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)CrossRefGoogle Scholar
  4. 4.
    Polania, L., Carrillo, R., Blanco-Velasco, M., Barner, K.: Exploiting prior knowledge in compressed sensing wireless ecg systems. IEEE J. Biomed. Health Inform. 19(2), 508–519 (2015)CrossRefGoogle Scholar
  5. 5.
    Blumensath, T., Davies, M.E.: On the difference between orthogonal matching pursuit and orthogonal least squares. Technical report, University of Edinburgh (2007)Google Scholar
  6. 6.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dixon, A.M.R., Allstot, E.G., Gangopadhyay, D., Allstot, D.J.: Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circ. Syst. 6(2), 156–166 (2012)CrossRefGoogle Scholar
  8. 8.
    Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Structured sparsity models for compressively sensed electrocardiogram signals: a comparative study. In: Biomedical Circuits and Systems Conference (BioCAS), 2011, pp. 125–128. IEEE (2011)Google Scholar
  9. 9.
    Wang, J., Kwon, S., Shim, B.: Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202–6216 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cheng, Y.C., Tsai, P.Y.: Low-complexity compressed sensing with variable orthogonal multi-matching pursuit and partially known support for ECG signals. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 994–997 (2015)Google Scholar
  11. 11.
    Dixon, A.M.R., Allstot, E.G., Chen, A.Y., Gangopadhyay, D., Allstot, D.J.: Compressed sensing reconstruction: comparative study with applications to ECG bio-signals. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 805–808 (2011)Google Scholar
  12. 12.
    Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  14. 14.
    Lin, Y., Clauss, M., Middendorf, M.: Simple probabilistic population based optimization. In: IEEE Transactions on Evolutionary Computation, no. 99, p. 1 (2015)Google Scholar
  15. 15.
    Weise, T., Chiong, R., Lässig, J.L., Tang, K., Tsutsui, S., Chen, W., Michalewicz, Z., Yao, X.: Benchmarking optimization algorithms: an open source framework for the traveling salesman problem. IEEE Comput. Intell. Mag. 9(3), 40–52 (2014)CrossRefGoogle Scholar
  16. 16.
    Janson, S., Middendorf, M.: Flexible particle swarm optimization tasks for reconfigurable processor arrays. In: Proceedings of the 8th International Workshop on Nature Inspired Distributed Computing (NIDISC 2005), p. 8 (2005)Google Scholar
  17. 17.
    Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000)CrossRefGoogle Scholar
  18. 18.
    Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)CrossRefGoogle Scholar
  19. 19.
    Bursa, M., Lhotska, L.: The use of ant colony inspired methods in electrocardiogram interpretation, an overview. In: The 2nd European Symposium on Nature-inspired Smart Information Systems [CD-ROM], NiSIS (2006)Google Scholar
  20. 20.
    Jafar, O.M., Sivakumar, R.: Ant-based clustering algorithms: a brief survey. Int. J. Comput. Theory Eng. 2(5), 787–796 (2010)CrossRefGoogle Scholar
  21. 21.
    Bursa, M., Lhotska, L.: Ant colony cooperative strategy in electrocardiogram and electroencephalogram data clustering. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). Studies in Computational Intelligence, vol. 129, pp. 323–333. Springer, Berlin (2008)CrossRefGoogle Scholar
  22. 22.
    Ramo, F.M.: Diagnosis of heart disease based on ant colony algorithm. Int. J. Comput. Sci. Inf. Secur. 11(5), 77 (2013)Google Scholar
  23. 23.
    Walker, J.S.: A Primer on Wavelets and Their Scientific Applications. Chapman and Hall/CRC, Boca Raton (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Abd-Alsabour, N.: Binary ant colony optimization for subset problems. In: Dehuri, S., Jagadev, A.K., Panda, M. (eds.) Multi-Objective Swarm Intelligence. Studies in Computational Intelligence, vol. 592, pp. 105–121. Springer, Berlin (2015)Google Scholar
  25. 25.
    Solnon, C., Bridge, D.: An Ant Colony Optimization Meta-Heuristic for Subset Selection Problems. Technical report RR-LIRIS-2005-017, University Lyon (2005)Google Scholar
  26. 26.
    Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yih-Chun Cheng
    • 2
  • Tom Hartmann
    • 1
  • Pei-Yun Tsai
    • 2
  • Martin Middendorf
    • 1
  1. 1.Parallel Computing and Complex Systems Group, Institute of Computer ScienceUniversity LeipzigLeipzigGermany
  2. 2.Department of Electrical EngineeringNational Central UniversityTaoyuan CityTaiwan

Personalised recommendations