Advertisement

There Can Be only One: Evolving RTS Bots via Joust Selection

  • A. Fernández-AresEmail author
  • P. García-Sánchez
  • A. M. Mora
  • P. A. Castillo
  • J. J. Merelo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9597)

Abstract

This paper proposes an evolutionary algorithm for evolving game bots that eschews an explicit fitness function using instead a match between individuals called joust and implemented as a selection mechanism where only the winner survives. This algorithm has been designed as an optimization approach to generate the behavioural engine of bots for the RTS game Planet Wars using Genetic Programming and has two objectives: first, to deal with the noisy nature of the fitness function and second, to obtain more general bots than those evolved using a specific opponent. In addition, avoiding the explicit evaluation step reduce the number of combats to perform during the evolution and thus, the algorithm time consumption is decreased. Results show that the approach performs converges, is less sensitive to noise than other methods and it yields very competitive bots in the comparison against other bots available in the literature.

Keywords

Score Uncertainty Specific Planet Extra Score Explicit Fitness Tournament Selection Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported in part by projects EPHEMECH (TIN2014-56494-C4-3-P, Spanish Ministerio de Economía y Competitividad), PROY-PP2015-06 (Plan Propio 2015 UGR), PETRA (SPIP2014-01437, funded by Dirección General de Tráfico), CEI2015-MP-V17 (awarded by CEI BioTIC Granada), and PRY142/14 (funded by Fundación Pública Andaluza Centro de Estudios Andaluces en la IX Convocatoria de Proyectos de Investigación).

References

  1. 1.
    Avery, P., Louis, S.: Co-evolving team tactics for a real-time strategy game. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–8 (2010)Google Scholar
  2. 2.
    Avery, P.M., Michalewicz, Z.: Adapting to human game play. In: IEEE Symposium on Computational Intelligence and Games (CIG 2008), pp. 8–15 (2008)Google Scholar
  3. 3.
    Cardona, A., Togelius, J., Nelson, M.: Competitive coevolution in Ms. Pac-Man. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2013), pp. 1403–1410 (2013)Google Scholar
  4. 4.
    Collazo, M.N., Cotta, C., Leiva, A.J.F.: Virtual player design using self-learning via competitive coevolutionary algorithms. Nat. Comput. 13(2), 131–144 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cook, M., Colton, S., Gow, J.: Initial results from co-operative co-evolution for automated platformer design. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 194–203. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Cotta, C., Fernández-Leiva, A.J., Sánchez, A.F., Lara-Cabrera, R.: Car setup optimization via evolutionary algorithms. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 346–354. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray, London (1859)Google Scholar
  8. 8.
    Esparcia-Alcázar, A., Moravec, J.: Fitness approximation for bot evolution in genetic programming. Soft Comput. 17(8), 1479–1487 (2013)CrossRefGoogle Scholar
  9. 9.
    Fernández-Ares, A., García-Sánchez, P., Mora, A.M., Merelo, J.J.: Adaptive bots for real-time strategy games via map characterization. In: 2012 IEEE Conference on Computational Intelligence and Games, CIG 2012, pp. 417–721. IEEE (2012)Google Scholar
  10. 10.
    Fernández-Ares, A., Mora, A.M., Merelo, J.J., García-Sánchez, P., Fernandes, C.: Optimizing player behavior in a real-time strategy game using evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, 2011 CEC 2011, pp. 2017–2024 June 2011Google Scholar
  11. 11.
    Garc\’ıa-Sánchez, P., Fernández-Ares, A., Mora, A.M., Castillo, P.A., González, J., Guerv, J.J.M.: Tree Depth Influence in Genetic Programming for Generation of Competitive Agents for RTS Games. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 411–421. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston (1989)zbMATHGoogle Scholar
  13. 13.
    Jaśkowski, W., Krawiec, K., Wieloch, B.: Winning ant wars: evolving a human-competitive game strategy using fitnessless selection. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., Falco, I., Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 13–24. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Kim, Y., Kim, J., Kim, Y.: A tournament-based competitive coevolutionary algorithm. Appl. Intell. 20(3), 267–281 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Koza, J.R.: Genetic Programming: On the Programming of Computers By Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  16. 16.
    Lara-Cabrera, R., Cotta, C., Leiva, A.J.F.: On balance and dynamism in procedural content generation with self-adaptive evolutionary algorithms. Nat. Comput. 13(2), 157–168 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Livingstone, D.: Coevolution in hierarchical ai for strategy games. In: IEEE Symposium on Computational Intelligence and Games (CIG 2005), IEEE (2005)Google Scholar
  18. 18.
    Merelo-Guervós, J.J.: Using a Wilcoxon-test based partial order for selectionin evolutionary algorithms with noisy fitness. Technical report, GeNeura group, university of Granada (2014). http://dx.doi.org/10.6084/m9.figshare.974598
  19. 19.
    Mora, A., Fernández-Ares, A., Guervós, J.M., García-Sánchez, P., Fernandes, C.: Effect of noisy fitness in real-time strategy games player behaviour optimisation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5), 1007–1023 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mora, A.M., Fernández-Ares, A., Merelo-Guervós, J.-J., García-Sánchez, P.: Dealing with noisy fitness in the design of a RTS game bot. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 234–244. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Nogueira, M., Cotta, C., Fernández-Leiva, A.J.: An analysis of hall-of-fame strategies in competitive coevolutionary algorithms for self-learning in RTS games. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 174–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Paredis, J.: Coevolutionary computation. Artif. Life 2(4), 355–375 (1995)CrossRefGoogle Scholar
  23. 23.
    Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy. Mach. Learn. 32, 225–240 (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evol. Comput. 5(1), 1–29 (1997)CrossRefGoogle Scholar
  25. 25.
    Runarsson, T.P., Lucas, S.M.: Co-evolution versus self-play temporal difference learning for acquiring position evaluation in smallboard go. IEEE Trans. Evol. Comput. 9(6), 628–640 (2005)CrossRefGoogle Scholar
  26. 26.
    Samothrakis, S., Lucas, S.M., Runarsson, T.P., Robles, D.: Coevolving game-playing agents: measuring performance and intransitivities. IEEE Trans. Evol. Comput. 17(2), 213–226 (2013)CrossRefGoogle Scholar
  27. 27.
    Smith, G., Avery, P., Houmanfar, R., Louis, S.: Using co-evolved rts opponents to teach spatial tactics. In: IEEE Symposium on Computational Intelligence and Games (CIG 2010), pp. 146–153 (2010)Google Scholar
  28. 28.
    Thompson, T., Levine, J., Wotherspoon, R.: Evolution of counter-strategies: Application of co-evolution to texas hold’em poker. In: IEEE Symposium on Computational Intelligence and Games (CIG 2008), pp. 16–22. IEEE (2008)Google Scholar
  29. 29.
    Togelius, J., Burrow, P., Lucas, S.M.: Multi-population competitive co-evolution of car racing controllers. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 4043–4050 (2007)Google Scholar
  30. 30.
    Whitley, D., Kauth, J.: GENITOR: A different genetic algorithm. In: Proceedings of the 1988 Rocky Mountain Conference on Artificial Intelligence. pp. 118–130. Computer Science Department, Colorado State University (1988)Google Scholar
  31. 31.
    Ziółko, B., Kruk, M.: Automatic reasoning in the planet wars game. Annales UMCS, Informatica 12(1), 39–45 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Fernández-Ares
    • 1
    Email author
  • P. García-Sánchez
    • 1
  • A. M. Mora
    • 1
  • P. A. Castillo
    • 1
  • J. J. Merelo
    • 1
  1. 1.Department of Computer Architecture and TechnologyUniversity of GranadaGranadaSpain

Personalised recommendations