Evolving Coverage Optimisation Functions for Heterogeneous Networks Using Grammatical Genetic Programming

  • Michael Fenton
  • David Lynch
  • Stepan Kucera
  • Holger Claussen
  • Michael O’Neill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9597)

Abstract

Heterogeneous Cellular Networks are multi-tiered cellular networks comprised of Macro Cells and Small Cells in which all cells occupy the same bandwidth. User Equipments greedily attach to whichever cell provides the best signal strength. While Macro Cells are invariant, the power and selection bias for each Small Cell can be increased or decreased (subject to pre-defined limits) such that more or fewer UEs attach to that cell. Setting optimal power and selection bias levels for Small Cells is key for good network performance. The application of Genetic Programming techniques has been proven to produce good results in the control of Heterogenous Networks. Expanding on previous works, this paper uses grammatical GP to evolve distributed control functions for Small Cells in order to vary their power and bias settings. The objective of these control functions is to evolve control functions that maximise a proportional fair utility of UE throughputs.

References

  1. 1.
    Cisco: Cisco visual networking index: global mobile data traffic forecast update, 2014 2019. Technical report (2015). http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
  2. 2.
    Hemberg, E., Ho, L., O’Neill, M., Claussen, H.: Evolving femtocell algorithms with dynamic and stationary training scenarios. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 518–527. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Tall, A., Altman, Z., Altman, E.: Self organizing strategies for enhanced ICIC (eICIC). arXiv preprint arXiv:1401.2369 (2014)
  4. 4.
    3gpp (2014). http://www.3gpp.org/
  5. 5.
    Chandrasekhar, V., Andrews, J., Gatherer, A.: Femtocell networks: a survey. Commun. Mag. 46, 59–67 (2008)CrossRefGoogle Scholar
  6. 6.
    Ho, L.T., Ashraf, I., Claussen, H.: Evolving femtocell coverage optimization algorithms using genetic programming. In: 20th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC), pp. 2132–2136. IEEE (2009)Google Scholar
  7. 7.
    Fagen, D., Vicharelli, P.A., Weitzen, J.A.: Automated wireless coverage optimization with controlled overlap. IEEE Trans. Veh. Technol. 57, 2395–2403 (2008)CrossRefGoogle Scholar
  8. 8.
    Deb, S., Monogioudis, P., Miernik, J., Seymour, J.P.: Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Trans. Networking (TON) 22, 137–150 (2014)CrossRefGoogle Scholar
  9. 9.
    Fenton, M., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: Load balancing in heterogeneous networks using an evolutionary algorithm. In: Proceedings of IEEE Conference on Evolutionary Computation, pp. 70–76, Sendai, Japan (2015)Google Scholar
  10. 10.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5, 349–358 (2001)CrossRefGoogle Scholar
  12. 12.
    Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37, 10–21 (1949)MathSciNetGoogle Scholar
  13. 13.
    M. R1-060877: Frequency domain scheduling for E-UTRA. Technical report TSG RAN1#44bis, March (2006)Google Scholar
  14. 14.
    Bian, Y.Q., Rao, D.: Small Cells big opportunities (2014). www.huawei.com/ilink/en/download/HW_330984
  15. 15.
    Bedekar, A., Agrawal, R.: Optimal muting and load balancing for eICIC. In: 11th International Symposium on Modeling & Optimization in Mobile, Ad Hoc & Wireless Networks (WiOpt), pp. 280–287. IEEE (2013)Google Scholar
  16. 16.
    Combes, R., Altman, Z., Altman, E.: Self-organization in wireless networks: a flow-level perspective. In: Proceedings of INFOCOM, pp. 2946–2950. IEEE (2012)Google Scholar
  17. 17.
    Wu, Q., Esteves, E., Proprietary, Q.: The CDMA2000 High Rate Packet Data System. Artech House, Norwood, MA, USA (2002)Google Scholar
  18. 18.
    López-Pérez, D., Claussen, H.: Duty cycles and load balancing in HetNets with eICIC almost blank subframes. In: 24th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC Workshops), pp. 173–178. IEEE (2013)Google Scholar
  19. 19.
    Whigham, P.A.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications. vol. 16, no. 3, pp. 33–41 (1995)Google Scholar
  20. 20.
    Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dynamic Environments. SCI, vol. 194. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  22. 22.
    Whigham, P.A.: Inductive bias and genetic programming. In: 1st International Conference on Genetic Algoritms in Engineering Systems: Innovations and Applications (GALESIA), pp. 461–466. IET (1995)Google Scholar
  23. 23.
    Backus, J.W., Nauer, F.L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis, A.J., Rutishauser, H., Samelson, K., Vauquois, B.: Revised report on the algorithmic language ALGOL 60. Comput. J. 5, 349–367 (1963)CrossRefMATHGoogle Scholar
  24. 24.
    McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach. 11, 365–396 (2010)CrossRefGoogle Scholar
  25. 25.
    Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling. Springer, Berlin (2006)MATHGoogle Scholar
  26. 26.
    Byrne, J., Fenton, M., Hemberg, E., McDermott, J., O’Neill, M., Shotton, E., Nally, C.: Combining structural analysis and multi-objective criteria for evolutionary architectural design. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 204–213. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Fenton, M., McNally, C., Byrne, J., Hemberg, E., McDermott, J., O’Neill, M.: Automatic innovative truss design using grammatical evolution. Autom. Constr. 39, 59–69 (2014)CrossRefGoogle Scholar
  28. 28.
    Fenton, M., McNally, C., Byrne, J., Hemberg, E., McDermott, J., O’Neill, M.: Discrete planar truss optimization by node position variation using grammatical evolution. In: IEEE Transactions on Evolutionary Computation (2016, in press)Google Scholar
  29. 29.
    Hemberg, E., Ho, L., O’Neill, M., Claussen, H.: A symbolic regression approach to manage femtocell coverage using grammatical genetic programming. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 639–646. ACM (2011)Google Scholar
  30. 30.
    Hemberg, E., Ho, L., O’Neill, M., Claussen, H.: A comparison of grammatical genetic programming grammars for controlling femtocell network coverage. Genet. Program. Evolvable Mach. 14, 65–93 (2013)CrossRefGoogle Scholar
  31. 31.
    Alba, E., Chicano, J.F.: Evolutionary algorithms in telecommunications. In: Electrotechnical Conference (MELECON), pp. 795–798. IEEE (2006)Google Scholar
  32. 32.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  33. 33.
    Google maps (2014). https://maps.google.com
  34. 34.
    Weber, A., Stanze, O.: Scheduling strategies for HetNets using eICIC. In: International Conference on Communications (IEEE ICC), pp. 6787–6791. IEEE (2012)Google Scholar
  35. 35.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael Fenton
    • 1
  • David Lynch
    • 1
  • Stepan Kucera
    • 2
  • Holger Claussen
    • 2
  • Michael O’Neill
    • 1
  1. 1.Natural Computing Research and Applications Group, UCDDublinIreland
  2. 2.Bell Laboratories, Alcatel-LucentDublinIreland

Personalised recommendations