Skip to main content

A Hybrid Discrete Artificial Bee Colony Algorithm for the Multicast Routing Problem

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9597)

Abstract

In this paper, a new algorithm is proposed for the solution of the Multicast Routing Problem. The algorithm is based on the Artificial Bee Colony approach hybridized with Variable Neighborhood Search. The quality of the algorithm is evaluated with experiments conducted on suitably modified benchmark instances of the Euclidean Traveling Salesman Problem from the TSP library. The results of the algorithm are compared to results obtained by several versions of the Particle Swarm Optimization algorithm. The comparisons indicated the effectiveness of the new approach.

Keywords

  • Artificial bee colony
  • Variable neighborhood search
  • Multicast routing problem

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-31204-0_14
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-31204-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Baykasoglu, A., Ozbakir, L., Tapkan, P.: Artificial bee colony algorithm and its application to generalized assignment problem. In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 113–144. I-Tech Education and Publishing, Vienna (2007)

    Google Scholar 

  2. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 31, 61–85 (2009)

    CrossRef  Google Scholar 

  3. Xing, B., Gao, W.J.: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Intelligent Systems Reference Library, vol. 62. Springer International Publishing, Cham (2014)

    CrossRef  MATH  Google Scholar 

  4. Abbass, H.A.: A monogenous mbo approach to satisfiability. In: International Conference on Computational Intelligence for Modeling, Control and Automation, CIMCA 2001, Las Vegas, NV, USA (2001)

    Google Scholar 

  5. Abbass, H.A.: Marriage in honey-bee optimization (MBO): a haplometrosis polygynous swarming approach. In: The Congress on Evolutionary Computation (CEC 2001), Seoul, Korea, pp. 207–214 (2001)

    Google Scholar 

  6. Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm for the vehicle routing problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) NICSO 2007. SIC, vol. 129, pp. 139–148. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  7. Marinakis, Y., Marinaki, M.: Bumble bees mating optimization algorithm for the vehicle routing problem. In: Panigrahi, B.K., Shi, Y., Lim, M.-H. (eds.) Handbook of Swarm Intelligence. ALO, vol. 8, pp. 347–369. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  8. Bitam, S., Mellouk, A.: Bee life-based multi constraints multicast routing optimization for vehicular ad hoc networks. J. Netw. Comput. Appl. 36, 981–991 (2013)

    CrossRef  Google Scholar 

  9. Yang, X.-S.: Engineering optimizations via nature-inspired virtual bee algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  10. Wedde, H.F., Farooq, M., Zhang, Y.: Beehive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–94. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  11. Munoz, M.A., Lopez, J.A., Caicedo, E.: An artificial beehive algorithm for continuous optimization. Int. J. Intell. Syst. 24, 1080–1093 (2009)

    CrossRef  MATH  Google Scholar 

  12. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm - a novel tool for complex optimization problems. In: IPROMS 2006 Proceeding 2nd International Virtual Conference on Intelligent Production Machines and Systems. Elsevier, Oxford (2006)

    Google Scholar 

  13. Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  14. Comellas, F., Martinez-Navarro, J.: Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behavior. In: Proceedings of First ACM/ SIGEVO Summit on Genetic and Evolutionary Computation (GECCO), pp. 811–814 (2009)

    Google Scholar 

  15. Teodorovic, D., Dell’Orco, M.: Bee colony optimization - a cooperative learning approach to complex transportation problems. In: Advanced OR and AI Methods in Transportation, Proceedings of the 16th Mini - EURO Conference and 10th Meeting of EWGT, pp. 51–60 (2005)

    Google Scholar 

  16. Hackel, S., Dippold, P.: The bee colony-inspired algorithm (BCiA)-a two stage approach for solving the vehicle routing problem with time windows. In: Proceedings of GECCO 2009, Montreal, Quebec, Canada, pp. 25–32 (2009)

    Google Scholar 

  17. Sato, T., Hagiwara, M.: Bee system: finding solution by a concentrated search. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3954–3959 (1997)

    Google Scholar 

  18. Quijano, N., Passino, K.M.: Honey bee social foraging algorithms for resource allocation: theory and application. Eng. Appl. Artif. Intell. 23, 845–861 (2010)

    CrossRef  Google Scholar 

  19. Maia, R.D., Castro, L.N.D., Caminhas, W.M.: Bee colonies as model for multimodal continuous optimization: the optbees algorithm. In: IEEE World Congress on Computational Intelligence (WCCI), Brisbane, Australia, pp. 1–8 (2012)

    Google Scholar 

  20. McCaffrey, J.D., Dierking, H.: An empirical study of unsupervised rule set extraction of clustered categorical data using a simulated bee colony algorithm. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 182–192. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  21. Fan, H., Zhong, Y.: A rough set approach to feature selection based on wasp swarm optimization. J. Comput. Inf. Syst. 8, 1037–1045 (2012)

    Google Scholar 

  22. Theraulaz, G., Goss, S., Gervet, J., Deneubourg, J.L.: Task differentiation in polistes wasps colonies: a model for self-organizing groups of robots. In: First International Conference on Simulation of Adaptive Behavior, pp. 346–355. MIT Press, Cambridge (1991)

    Google Scholar 

  23. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  24. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    CrossRef  Google Scholar 

  25. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57 (2014)

    CrossRef  Google Scholar 

  26. Marinakis, Y., Migdalas, A.: A particle swarm optimization algorithm for the multicast routing problem. In: Batsyn, M.V., Kalyagin, V.A., Pardalos, P.M. (eds.) Models, Algorithms and Technologies for Network Analysis: Third International Conference on Network Analysis. Springer Proceedings in Mathematics & Statistics, vol. 104, pp. 69–91. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  27. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems in multicast routing. Comput. Oper. Res. 32, 1953–1981 (2005)

    CrossRef  MATH  Google Scholar 

  28. Oliveira, C.A.S., Pardalos, P.M., Resende, M.G.C.: Optimization problems in multicast tree construction. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommunications, pp. 701–731. Springer, New York (2006)

    CrossRef  Google Scholar 

  29. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  30. Chow, C.H.: On multicast path finding algorithms. In: IEEE INFOCOM 1991, pp. 1974–1283. IEEE (1991)

    Google Scholar 

  31. Takahashi, H., Mutsuyama, A.: An approximate solution for the steiner problem in graphs. Math. Jpn. 6, 573–577 (1980)

    Google Scholar 

  32. Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 1, 286–292 (1988)

    Google Scholar 

  33. Kompleea, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Networking 1, 286–292 (1993)

    CrossRef  Google Scholar 

  34. Tode, H., Sakai, Y., Yamamoto, M., Okada, H., Tezuka, Y.: Multicast routing algorithm for nodal load balancing. In: IEEE INFOCOM 1992, pp. 2086–2095. IEEE (1992)

    Google Scholar 

  35. Hwang, R.H., Do, W.Y., Yang, S.C.: Multicast routing based on genetic algorithms. In: WiOpt 2003: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. INRIA Sophia-Antipolis, France (2003)

    Google Scholar 

  36. Wu, J.J., Hwang, R.H.: Multicast routing with multiple constraints. Inf. Sci. 124, 29–57 (2000)

    CrossRef  Google Scholar 

  37. D’Andreagiovanni, F., Nardin, A.: Towards the fast and robust optimal design of wireless body area networks. Appl. Soft Comput. 37, 971–982 (2015)

    CrossRef  Google Scholar 

  38. D’Andreagiovanni, F., Krolikowski, J., Pulaj, J.: A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods. Appl. Soft Comput. 26, 497–507 (2015)

    CrossRef  Google Scholar 

  39. Doar, M., Leslie, I.: How bad is naive multicast routing. In: Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking: Foundation for the Future, INFOCOM 1993, Proceedings, pp. 82–89. IEEE (1993)

    Google Scholar 

  40. Oh, J., Pyo, I., Pedram, M.: Constructing minimal spanning/steiner trees with bounded path length. In: European Design and Test Conference, pp. 244–249 (1996)

    Google Scholar 

  41. Marinakis, Y., Marinaki, M., Matsatsinis, M.: A hybrid discrete artificial bee colony - grasp algorithm for clustering. In: 39th International Conference on Computers and Industrial Engineering, Troyes, France (2009)

    Google Scholar 

  42. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedure. J. Global Optim. 6, 109–133 (1995)

    MathSciNet  CrossRef  MATH  Google Scholar 

  43. Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eu. J. Oper. Res. 130, 449–467 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  44. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11, 4135–4151 (2011)

    CrossRef  MATH  Google Scholar 

  45. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of 1998 IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

    Google Scholar 

  46. Hansen, P., Mladenović, N., Moreno-Pérez, J.A.: Variable neighborhood search: methods and applications. Ann. Oper. Res. 175, 367–407 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Marinakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Marinakis, Y., Marinaki, M., Migdalas, A. (2016). A Hybrid Discrete Artificial Bee Colony Algorithm for the Multicast Routing Problem. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)