19th c. Olivier String Models at Cornell University: Ruled Surfaces in Gear Design

Conference paper
Part of the History of Mechanism and Machine Science book series (HMMS, volume 32)

Abstract

This paper describes a newly discovered collection of 19th c. Olivier string models for descriptive geometry at Cornell University, Ithaca, NY, USA. String models illustrating concepts of descriptive geometry were employed in the 19th and early 20th centuries as teaching and visualization aids for engineering, architecture and mathematics. The carefully crafted “Olivier models” are composed of finished wooden bases, brass armatures and colored threads and have an inherent beauty. They illustrate a variety of ruled surfaces—cylinders, hyperboloids, cones, conoids, planes and hyperbolic paraboloids (hypars)—and their intersections. The models not only served to enhance mathematical and drawing skills but also inspired designers and artists. Such inspiration is evident for both the design of mechanisms for machines and for the creation of 20th century sculpture. It is believed the models were copied after the historic original Olivier Models at Union College circa 1884.

Keywords

String models Ruled surfaces Olivier Gears Hyperboloid Hypoid Cornell 

References

  1. 1.
    Abel, J.F., Oliva, J.G. (eds.): Special issue for the centenary of the birth of Félix Candela. J. Int. Assoc. Shell Spatial Struct. 51(1) (2010)Google Scholar
  2. 2.
    Abel, J.F., Moon, F.C.: 19th c. String models for descriptive geometry: Possible inspirations for structural forms. In: Proceedings of the IASS-SLTE 2014 Symposium “Shells Membranes and Spatial Structures, (eds) Rayolando, MLRF. Brasil and Ruy MO Pauletti, Brasilia, Brazil (2014)Google Scholar
  3. 3.
    Barr, J.H., Wood, E.H.: Kinematics of Machinery. Wiley, New York (1899, 1911, 1916)Google Scholar
  4. 4.
    Borgnis, J.A.: Trait Complet de Mechanique Applique aux Arts: Composition des Machines, Paris (1818)Google Scholar
  5. 5.
    Brown, H.T.: Five Hundred and Seven Mechanical Movements. Brown Coombs and Co., New York (1868)Google Scholar
  6. 6.
    Dunkerley, S.: Mechanism. Longmans, Green and Co., London (1910)Google Scholar
  7. 7.
    Durley, R.J.: Kinematics of Machines. Wiley, New York (1907)Google Scholar
  8. 8.
    Graf von Seherr-Thoss, C.: Die Entwicklung Der Zahnrad-Technik. Springer, Berlin (1965)Google Scholar
  9. 9.
    Hervé J.M., Théodore Olivier, Distinguished Figures in Mechanism and Machine Science, Ceccarelli M. (ed.). Springer, Dordrecht (2007), pp. 295–318Google Scholar
  10. 10.
    Kennedy, A.B.W.: The Mechanics of Machinery. MacMillan & Co., London (1886)Google Scholar
  11. 11.
    Laboulaye, C.: Traite de Cinematique ou Theorie des Mechanismes, Paris (1849, 1864)Google Scholar
  12. 12.
    Lanz, P.L., Betancourt, A.: Analytical Essay on the Construction of Machines, Paris, London (1808)Google Scholar
  13. 13.
    MacCord, C.W.: Kinematics. Wiley, New York (1883)Google Scholar
  14. 14.
    MacCord, C.W.: Descriptive Geometry. Wiley, New York (1895)Google Scholar
  15. 15.
    Moon, F.C.: Franz Reuleaux: contributions to 19th C. Kinematics and history of machines. Appl. Mech. Rev. 56(2) (2003)Google Scholar
  16. 16.
    O’Conner, J.J., Robertson E.F.: Théodore Olivier, MacTutor History of Mathematics, 2002. http://www-history.mcs.st-andrews.ac.uk/Biographies/Olivier.html
  17. 17.
    Rankine, W.: A Manual of Machinery and Millwork, London (1887)Google Scholar
  18. 18.
    Redtenbacher, F.: Resultate für den Maschinenbau. Verlag von F. Bassermann, Mannheim, Germany (1861)Google Scholar
  19. 19.
    Reuleaux, F.: Der Constructeur. Braunschweig (1861, 1864)Google Scholar
  20. 20.
    Reuleaux, F.: Kinematics of Machinery. MacMillan & Co., London (1876)Google Scholar
  21. 21.
    Schumann, C.H.: Descriptive Geometry, A Treatise on the Graphics of Space for Scientific Professions (1927)Google Scholar
  22. 22.
    Albert, C.D., Rogers, F.S.: Kinematics of Machinery. Wiley, New York (1931,1938)Google Scholar
  23. 23.
    Stone, W.C.: The Olivier Models. Friends of the Union College Library, Schenectady (New York) (1969)Google Scholar
  24. 24.
    The Royal Society: Intersections: Henry Moore and stringed surfaces, Catalogue to accompany an exhibition at the Science Museum, London, The Royal Society Publication DES2533, March 2012: https://royalsociety.org/~/media/Royal_Society_Content/z_events/2012/Intersections2012-04-04.pdf
  25. 25.
    Vierling-Claassen, A.: Models of surfaces and abstract art in the early 20th century. In: Hart, G., Sarhangi, R. (eds.) Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture, Tessellations Publishing, 2010, pp. 11–18. http://bridgesmathart.org/2010/cdrom/proceedings/46/index.html
  26. 26.
    Waywiser, http://dssmhi1.fas.harvard.edu/emuseumdev/code/eMuseum.asp?page=collections (search for “Olivier”), Collection of historical scientific instruments. Harvard University
  27. 27.
    Willis, R.: Principles of Mechanisms. London England (1841, 1870)Google Scholar
  28. 28.
    Yan, H.S.: Antique Mechanism Models in Taiwan. National Cheng-Kung University Museum, Tainan, Taiwan (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Civil and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations