Skip to main content

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models in Grammatical Evolution

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9598)

Abstract

This paper presents a method for accelerating the evaluation of individuals in Grammatical Evolution. The method is applied for identification and modeling problems, where, in order to obtain the fitness value of one individual, we need to compute a mathematical expression for different time events. We propose to evaluate all necessary values of each individual using only one mathematical Java code. For this purpose we take profit of the flexibility of grammars, which allows us to generate Java compilable expressions. We test the methodology with a real problem: modeling glucose level on diabetic patients. Experiments confirms that our approach (compilable phenotypes) can get up to 300x reductions in execution time.

Keywords

  • Grammatical evolution
  • Model identification
  • Diabetes mellitus

J.M. Colmenar—Support from Spanish Government Grant TIN2014-54806-R is acknowledged by ABSyS group.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-31153-1_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-31153-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA (2000)

    MATH  Google Scholar 

  2. Hidalgo, J.I., Lanchares, J., Ibarra, A., Hermida, R.: A hybrid evolutionary algorithm for multi-FPGA systems design. In: Proceedings of the Euromicro Symposium on Digital System Design, pp. 60–67 (2002)

    Google Scholar 

  3. Langdon, W.B.: Graphics processing units and genetic programming: an overview. Soft Comput. 15, 1657–1669 (2011)

    CrossRef  Google Scholar 

  4. Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., Jaros, J.: Acceleration of GE using GPUs: computational intelligence on consumer games and graphics hardware. In: Companion Proceedings of the 13th GECCO, pp. 431–438 (2011)

    Google Scholar 

  5. Hu, T., Harding, S., Banzhaf, W.: Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm. Genet. Program Evolvable Mach. 11(2), 205–225 (2010)

    CrossRef  Google Scholar 

  6. Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)

    Google Scholar 

  7. Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using CUDA. In: Workshop on Parallel Architectures and Bioinspired Algorithms, Raleigh, USA (2009)

    Google Scholar 

  8. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)

    CrossRef  MATH  Google Scholar 

  9. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008). Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk

  10. Breidecker, R.: JEval. Java library for functional expression parsing and evaluation (2007). http://sourceforge.net/projects/jeval/

  11. JEXL: Java EXpression Language (2015). http://commons.apache.org/proper/commons-jexl/

  12. Adaptive and Bioinspired Systems Group: ABSys JECO (Java Evolutionary COmputation) library (2015). https://github.com/ABSysGroup/jeco

  13. O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., Brabazon, A.: GEVA - Grammatical Evolution in Java. Technical report, Natural Computing Research and Applications Group - UCD Complex and Adaptive Systems Laboratory, University College Dublin, Ireland (2008)

    Google Scholar 

  14. Hidalgo, J.I., Colmenar, J.M., Risco-Martin, J.L., Cuesta-Infante, A., Maqueda, E., Botella, M., Rubio, J.A.: Modeling glycemia in humans by means of Grammatical Evolution. Appl. Soft Comput. 20, 40–53 (2014)

    CrossRef  Google Scholar 

  15. AIDA: AIDA diabetic software simulator (2011). http://www.2aida.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Colmenar, J.M. et al. (2016). Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models in Grammatical Evolution. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9598. Springer, Cham. https://doi.org/10.1007/978-3-319-31153-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31153-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31152-4

  • Online ISBN: 978-3-319-31153-1

  • eBook Packages: Computer ScienceComputer Science (R0)