Hybrid Control for a Real Swarm Robotics System in an Intruder Detection Task

  • Miguel DuarteEmail author
  • Jorge Gomes
  • Vasco Costa
  • Sancho Moura Oliveira
  • Anders Lyhne Christensen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9598)


Control design is one of the prominent challenges in the field of swarm robotics. Evolutionary robotics is a promising approach to the synthesis of self-organized behaviors for robotic swarms but it has, so far, only produced been shown in relatively simple collective behaviors. In this paper, we explore the use of a hybrid control synthesis approach to produce control for a swarm of aquatic surface robots that must perform an intruder detection task. The robots have to go to a predefined area, monitor it, detect and follow intruders, and manage their energy levels by regularly recharging at a base station. The hybrid controllers used in our experiments rely on evolved behavior primitives that are combined through a manually programmed high-level behavior arbitrator. In simulation, we show how simple modifications to the behavior arbitrator can result in different swarm behaviors that use the same underlying behavior primitives, and we show that the composed behaviors are scalable with respect to the swarm size. Finally, we demonstrate the synthesized controller in a real swarm of robots, and show that the behavior successfully transfers from simulation to reality.


Swarm robotics Evolutionary robotics Hybrid control Self-organization Aquatic robots 



This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under the grants, SFRH/BD/76438/2011, SFRH/BD/89095/2012, PEst-OE/EEI/LA0008/2013, and EXPL/EEI-AUT/0329/2013.


  1. 1.
    Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172(8), 292–321 (2016)Google Scholar
  3. 3.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)CrossRefGoogle Scholar
  4. 4.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-organising Behaviours in Groups of Autonomous Robots. SCI, vol. 108. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. (2016, in press)Google Scholar
  7. 7.
    Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hybrid robotic controllers for complex tasks. J. Intell. Robot. Syst. 78(3–4), 463–484 (2015)CrossRefGoogle Scholar
  8. 8.
    Silva, F., Duarte, M., Oliveira, S.M., Correia, L., Christensen, A.L.: The case for engineering the evolution of robot controllers. In: Proceedings of the International Conference on the Simulation & Synthesis of Living Systems (ALIFE), pp. 703–710. MIT Press, Cambridge (2014)Google Scholar
  9. 9.
    Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2(4) (2015)Google Scholar
  10. 10.
    Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots (2015). Preprint,
  11. 11.
    Trianni, V., López-Ibáñez, M.: Advantages of task-specific multi-objective optimisation in evolutionary robotics. PLoS ONE 10(8), e0136406 (2015)CrossRefGoogle Scholar
  12. 12.
    Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adapt. Behav. 5(3–4), 317–342 (1997)CrossRefGoogle Scholar
  13. 13.
    Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)CrossRefGoogle Scholar
  14. 14.
    Whitley, L.D.: Fundamental principles of deception in genetic search. In: Proceedings of the 1st Workshop on Foundations of Genetic Algorithms, pp. 221–241. Morgan Kaufmann, San Mateo (1991)Google Scholar
  15. 15.
    Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective pressures for evolutionary robotics. Evol. Intel. 7(2), 71–93 (2014)CrossRefGoogle Scholar
  16. 16.
    Christensen, A.L., Dorigo, M.: Incremental evolution of robot controllers for a highly integrated task. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 473–484. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Lehman, J., Stanley, K.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)CrossRefGoogle Scholar
  18. 18.
    Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)CrossRefGoogle Scholar
  19. 19.
    Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems with novelty search. Swarm Intell. 7(2–3), 115–144 (2013)CrossRefGoogle Scholar
  20. 20.
    Gomes, J., Christensen, A.L.: Generic behaviour similarity measures for evolutionary swarm robotics. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO), pp. 199–206. ACM, New York (2013)Google Scholar
  21. 21.
    Lee, W.P.: Evolving complex robot behaviors. Inf. Sci. 121(1–2), 1–25 (1999)CrossRefGoogle Scholar
  22. 22.
    Larsen, T., Hansen, S.T.: Evolving composite robot behaviour - a modular architecture. In: Proceedings of the International Workshop on Robot Motion and Control (RoMoCo), pp. 271–276. IEEE Press, Piscataway (2005)Google Scholar
  23. 23.
    Becerra, J.A., Bellas, F., Santos, J., Duro, R.J.: Complex behaviours through modulation in autonomous robot control. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 717–724. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Tunstel, E.: Mobile robot autonomy via hierarchical fuzzy behavior control. In: Proceedings of the International Symposium on Robotics and Manufacturing (WAC), pp. 837–842. ASME Press, New York (1996)Google Scholar
  25. 25.
    Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms of aquatic drones. In: Proceedings of the 14th International Conference on the Synthesis & Simulation of Living Systems, pp. 785–792. MIT Press, Cambridge (2014)Google Scholar
  26. 26.
    Rodrigues, T., Duarte, M., Figueiró, M., Costa, V., Oliveira, S.M., Christensen, A.L.: Overcoming limited onboard sensing in swarm robotics through local communication. In: Nguyen, N.T., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.) TCCI XX. LNCS, vol. 9420, pp. 201–223. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27543-7_10 CrossRefGoogle Scholar
  27. 27.
    Duarte, M., Silva, F., Rodrigues, T., Oliveira, S.M., Christensen, A.L.: JBotEvolver: a versatile simulation platform for evolutionary robotics. In: Proceedings of the 14thInternational Conference on the Synthesis & Simulation of Living Systems, pp. 210–211. MIT Press, Cambridge (2014)Google Scholar
  28. 28.
    Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1996)CrossRefGoogle Scholar
  29. 29.
    Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt. Behav. 6(2), 325–368 (1997)CrossRefGoogle Scholar
  30. 30.
    Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRefGoogle Scholar
  31. 31.
    Hamann, H.: Towards swarm calculus: universal properties of swarm performance and collective decisions. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 168–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Miguel Duarte
    • 1
    • 2
    • 3
    Email author
  • Jorge Gomes
    • 1
    • 2
    • 4
  • Vasco Costa
    • 1
    • 2
    • 3
  • Sancho Moura Oliveira
    • 1
    • 2
    • 3
  • Anders Lyhne Christensen
    • 1
    • 2
    • 3
  1. 1.BioMachines LabLisbonPortugal
  2. 2.Instituto de TelecomunicaçõesLisbonPortugal
  3. 3.Instituto Universitário de Lisboa (ISCTE-IUL)LisbonPortugal
  4. 4.Faculdade de CiênciasBioISILisbonPortugal

Personalised recommendations