Skip to main content

Special Topics in Cryostat Design

  • Chapter
  • First Online:

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

This chapter describes a series of special topics that, while coming from the development of Magnetic Resonance Imaging cryostats, are applicable to many other cryostat designs as well. The topics are: boil off minimization, cryocooler integration, designing with inclined tubes and pressure relief and venting. This chapter contains many figures, tables, equations, design algorithms and references useful to cryostat designers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Open under high pressure in this case means the open end of the tube is connected to a larger gas reservoir under high pressure.

References

  1. W. Stautner, Quantitative energy balance analysis in cryostats, in Physicist’s Conference, Oral presentation, Münster, 1984

    Google Scholar 

  2. G. M. Dusinberre, Heat Transfer Calculation by Finite Differences (International Text book Company, 1960)

    Google Scholar 

  3. G.M. Dusinberre, Numerical analysis of heat flow (McGraw Hill, 1949)

    Google Scholar 

  4. D. Croft, D. Lilley, Heat Transfer Calculations Using Finite Difference Equations (Applied Science Publishers, 1977)

    Google Scholar 

  5. P. Hanzelka, I. Vejchoda, Academy of sciences of the Czech Republic, Institute of Scientific Instruments (2003)

    Google Scholar 

  6. G. Arahonian, L.G. Hyman, L. Roberts, Behavior of power leads for superconducting magnets. Cryogenics 21, 145 (1981)

    Article  ADS  Google Scholar 

  7. J.M. van Oort, E.T. Laskaris, P.S. Thompson, B. Dorri, K.G. Herd, A cryogen-free 0.5 Tesla MRI magnet for head imaging. Adv. Cryog. Eng. 43, 139–147 (1998)

    Article  Google Scholar 

  8. K.G. Herd, E.T. Laskaris, P.S. Thompson, A dual refrigerator assembly for cryogen-free superconducting magnet applications. IEEE Trans. Appl. Supercond. 5, 185–188 (1995)

    Article  Google Scholar 

  9. J R. Ross, M. Donabedian, Spacecraft thermal control handbook. Cryogenics II (2003)

    Google Scholar 

  10. W. Stautner, K. Sivasubramaniam, E.T. Laskaris, S. Mine, J. Rochford, E. Budesheim, K. Amm, A cryo-free 10 T high-field magnet system for a novel superconducting application. IEEE Trans. Appl. Supercond. 21, 2225–2228 (2011)

    Article  ADS  Google Scholar 

  11. J.R. Heim, The heim column, National accelerator laboratory, report TM.334A (1971), pp. 1–21

    Google Scholar 

  12. G. Hartwig, Support elements with extremely negative thermal expansion. Cryogenics 35, 717–718 (1995)

    Article  ADS  Google Scholar 

  13. J. Sun, S. Sanz, H. Neumann, Conceptual design and thermal analysis of a modular cryostat for one single coil of a 10 MW offshore superconducting wind turbine, in IOP Conference Series, vol. 101 (2015) p. 012088

    Google Scholar 

  14. W. Stautner, Remote actuated cryocooler for SC generator and method of assembly the same, US20140100113A1

    Google Scholar 

  15. F.J. Davies, W. Stautner, A.F. Byrne, M. Wilson An HTS magnet for whole-body MRI, EUCAS’99

    Google Scholar 

  16. W. Stautner, K. Amm, E.T. Laskaris, M. Xu, X. Huang, A new cooling technology for the cooling of HTS magnets. IEEE Trans. Appl. Supercond. 17, 2200–2203 (2007)

    Article  ADS  Google Scholar 

  17. W. Stautner, M. Xu, E.T. Laskaris, G. Conte, P.S. Thompson, C. van Epps, K. Amm, The cryogenics of a thermosiphon-cooled HTS MRI magnet—assembly and component testing. IEEE Trans. Appl. Supercond. 21, 2096–2098 (2011)

    Article  ADS  Google Scholar 

  18. W. Stautner, M. Xu, S. Mine, K. Amm, Hydrogen cooling options for MgB2-based superconducting systems, in AIP Conference Proceedings, vol. 1573 (2014), p. 82

    Google Scholar 

  19. W. Stautner. K. Amm, M. Xu, Cooling systems for HTS applications—overview and critical assessment, IWC-HTS plenary talk 1, Matsue-Shi (2015)

    Google Scholar 

  20. H. Vermeulen, Cryogenic circulators: the solution for cooling problems? Cold Facts 29(2), 49–48 (2013)

    Google Scholar 

  21. K.R. Feller, L.J. Salerno, A. Kashani, B.P. Helvensteijn, J.R. Maddocks, G.F. Nellis, Y.B. Gianchandani, Technologies for cooling of large distributed loads, AIAAA, 092497 (2008)

    Google Scholar 

  22. C. Wang, E. Brown, A. Friebel, A compact cold helium circulation system with GM cryocooler, in 18th International cryocooler conference ICC, Syracuse (2014)

    Google Scholar 

  23. M.S. Islam, R.G. Scurlock, Qualitative details of the complex flow in cryogenic vapor columns. Cryogenics 655–680 (1977)

    Google Scholar 

  24. P. Lnyam, A.M. Mustafa, W. Proctor, R.G. Scurlock, Reduction of the heat flux into liquid helium in wide necked metal dewars. Cryogenics 242–247 (1969)

    Google Scholar 

  25. M.S. Islam, R.G. Scurlock, Analysis of solid vapor heat transfer in helium vapor columns at low temperatures. Cryogenics 323–328 (1978)

    Google Scholar 

  26. M.S. Islam, D.J. Richards, R.G. Scurlock, The influences of thermal stratification and flow interaction on the enhanced natural convective heat transfer at low temperatures. Cryogenics 319–325 (1978)

    Google Scholar 

  27. J. Boarman, P. Lynam, R.G. Scurlock, Complex flow in vapor columns over boiling liquids. Cryogenics 520–523 (1973)

    Google Scholar 

  28. P. Lnyam, W. Proctor, R.G. Scurlock, Reduction of the evaporation rate of liquid helium in wide necked dewars, in Heat Flow Below 100 K, no. 2 (International Institute of Refrigeration, Paris, France, 1965), pp 351–247

    Google Scholar 

  29. S. Kasturirengan, S. Jacob et al., Experimental studies of convection in a single stage pulse tube refrigerator. Adv. Cryog. Eng. 49, 1474–1481 (2003)

    Google Scholar 

  30. G. Thummes et al., Convective heat losses in pulse tube coolers: effect of pulse tube inclination. Cryocoolers 9, 393–402 (1997)

    Google Scholar 

  31. R. Langebach, C. Haberstroh, Natural convection in inclined pipes—a new correlation for heat transfer estimations, in AIP Conference Proceedings, vol. 1573 (2014), pp. 1504–1511

    Google Scholar 

  32. R. Bewilogua et al., Application of the thermosiphon for precooling apparatus. Cryogenics 6, 34–36 (1966)

    Article  ADS  Google Scholar 

  33. R. Langebach, Wärmeeintrag durch geneigte Rohrleitungen in kryogene Speicherbehälter, Dissertation, TUD press, 2013, URL: http://books.google.de/books?id=Cez5nAEACAAJ

  34. W. Lehmann, Internal report, Safety aspects LHe cryostats and LHe transport containers, Research Center Karlsruhe, Report 08.01.01P04B (1978)

    Google Scholar 

  35. J.R. Miller, ORNL, Pressure rise during the quench of a superconducting magnet using internally cooled conductors (1980), pp. 321–329

    Google Scholar 

  36. P.H. Eberhard, et al, Lawrence Berkeley Lab, Quenches in large superconducting magnets, in Proceedings of 6th international Conference on Magazine Technology (MT 6), Paper 75, Bratislava (1977), pp. 654–662

    Google Scholar 

  37. K. N. Henrichsen, et al, Analysis of some resistive transitions in the ISR super-conducting quadrupole magnets. Adv. Cryog. Eng. 27, 245–256 (1982)

    Google Scholar 

  38. V. Kadambi, B. Dorri, Current decay and temperatures during superconducting magnet coil quench. Cryogenics 157–164 (1986)

    Google Scholar 

  39. B. Seeber, Handbook of applied superconductivity, in Pressure increase during a quench, Vol. 2, Figure G2.2.24 (Stautner) (1998), p. 1235

    Google Scholar 

  40. R.J. Walker, Calculation of the pressure rise in the Fermilab 19000 l helium dewar, Adv. Cryog. Eng. 29, 777–784

    Google Scholar 

  41. R.J. Walker, private communication (1985)

    Google Scholar 

  42. G. Bozóki, Überdrucksicherungen für Behälter und Rohrleitungen. Verlag TÜV Rheinland (1977)

    Google Scholar 

  43. W. Lehmann, Sicherheitsauflagen beim Engineering von LHe- und LN2-Apparaten und –Anlagen, Research Center Karlsruhe, Report 03.05.01P02A (1982)

    Google Scholar 

  44. Y. Lvovsky, W. Stautner, Novel technologies and configurations of superconducting magnets for MRI. Supercond. Sci. Technol. 26(9), article id. 093001 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stautner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stautner, W. (2016). Special Topics in Cryostat Design. In: Weisend II, J. (eds) Cryostat Design. International Cryogenics Monograph Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31150-0_7

Download citation

Publish with us

Policies and ethics