Skip to main content

Principles of Cryostat Design

  • Chapter
  • First Online:
Cryostat Design

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

This chapter provides an introduction to the engineering and design of cryostats. It reviews cryostat requirements and provides detailed technical information on topics relevant to cryostats. These topics include: materials, heat transfer and thermal insulation systems, structural supports, safety, instrumentation, seals and connections, transfer lines and thermoacoustic oscillations. The role of prototyping and series testing in cryostat development is also discussed. Numerous tables, figures and equations provide useful information for the cryostat designer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Ganni, P. Knudsen, Helium refrigeration considerations for cryomodule design. Adv. Cryo. Eng. 59B (2014)

    Google Scholar 

  2. J.G. Weisend II, C. Pagani, R. Bandelmann, D. Barni, A. Bosotti, G. Gygiel, R. Lange, P. Pierini, D. Sellman, S. Wolff, The TESLA test facility (TTF) cryomodule: a summary of work to date. Adv. Cryo. Eng. 45A (2000)

    Google Scholar 

  3. F. Haug, T. Peterson, J.G. Weisend II, Cryogenic Safety—A Guide to Best Practice in the Lab and Workplace (Springer, USA, in Preparation)

    Google Scholar 

  4. J.G. Weisend II, R. Boyce, W. Burgess, A. Candia, R. Carr, J. Gao, K. Gustafsson, C. Jones, W. Kaminskas, G. Oxoby, R. McKeown, H. Quack, A. Scott, T. Weber, The cryogenic system for the SLAC E158 experiment. Adv. Cryo. Eng. 47A (2002)

    Google Scholar 

  5. R.P. Reed, A.F. Clark (eds.), Materials at Low Temperatures (American Society of Metals, 1983)

    Google Scholar 

  6. J.G. Weisend II, V. Flynn, E. Thompson, R.P. Reed, A reference guide for cryogenic properties of materials. SLAC-TN-03–023, web information available at http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-tn-03-023.pdf. Accessed 7 Jan 2015

  7. T.F. Durham, R.M. McClintock, R.P. Reed, Cryogenic Materials Data Handbook (US Dept. of Commerce, National Bureau of Standards, Washington, DC, 1961)

    Google Scholar 

  8. J.G. Weisend II (ed.), The Handbook of Cryogenic Engineering (Taylor & Francis, New York, 1998)

    Google Scholar 

  9. G. Ventura, M. Perfetti, Thermal Properties of Solids at Room and Cryogenic Temperatures (Springer, New York, 2014)

    Book  Google Scholar 

  10. Cryocomp, Eckels Engineering. http://www.eckelsengineering.com/

  11. METALPAK, CPAK and EXPAK from Cryodata. http://www.htess.com/software.htm

  12. H.M. Rosenburg, Low Temperature Solid State Physics (Oxford University Press, Oxford, 1963)

    Google Scholar 

  13. T.H. Nicol, TESLA test cell cryostat support post thermal and structural analysis. Fermilab-TM-1794 (1992)

    Google Scholar 

  14. S.W. Van Sciver, Helium Cryogenics (Springer, New York, 2012)

    Google Scholar 

  15. S.R. Breon, R.A. Hopkins, S.J. Nieczkoski, The X-ray spectrometer—a cryogenic instrument on the advanced X-ray astrophysics facility. Adv. Cryo. Eng. 37B (1992)

    Google Scholar 

  16. A. Poncet, V. Parma, Series-produced helium cryostats for the LHC magnets: technical choices, industrialisation, costs. Adv. Cryo. Eng. 53A (2008)

    Google Scholar 

  17. W.L. Johnson, A.O. Kelley, J.E. Fesmire, Thermal degradation of multilayer insulation due to the presence of penetrations. Adv. Cryo. Eng. 59A (2014)

    Google Scholar 

  18. J.G. Weisend II, Cryogenic engineering, in Mechanical Engineer’s Handbook, ed. by M. Kutz (Wiley, New York, 2015)

    Google Scholar 

  19. J. Fesmire, S. Augustynomicz, B.E. Scholtens, Robust multilayer insulation for cryogenic systems. Adv. Cryo. Eng. 53B (2008)

    Google Scholar 

  20. J. Polinski, M. Chorowski, A. Choudhury, T. Datta, Synthesis of the multilayer cryogenic insulation modeling and measurements. Adv. Cryo. Eng. 53B (2008)

    Google Scholar 

  21. T.M. Flynn, Cryogenic Engineering (Marcel Dekker, New York, 1997)

    Google Scholar 

  22. R.G. Baumgartner, E.A. Myers, J.E. Fesmire, D.L. Morris, E.R. Sokalski, Demonstration of microsphere insulation in cryogenic vessels. Adv. Cryo. Eng. 51B (2006)

    Google Scholar 

  23. S. White, J. Demko, A. Tomich, Flexible aerogel as a superior thermal insulation for high temperature superconductors. Adv. Cryo. Eng. 55A (2010)

    Google Scholar 

  24. J.E. Fesmire, S. White, G. Gould, S. Augustynowicz, Aerogel blanket insulation materials for cryogenic applications. Adv. Cryo. Eng. 55B (2010)

    Google Scholar 

  25. R. Barron, Cryogenic Systems (McGraw-Hill, 1966)

    Google Scholar 

  26. G. Oliver, J.P. Thermeau, P. Bosland, G. Devanz, F. Lesigneur, C. Darve, ESS Cryomodule for elliptical cavities, in Proceedings of the 16th International Conference on RF Superconductivity (2013)

    Google Scholar 

  27. J.D. Fuerst, S.M. Gerbick, M.P. Kelly, M. Kedzie, et al. Assembly, installation and commissioning of the ATLAS upgrade cryomodule. Adv. Cryo. Eng. 55A (2010)

    Google Scholar 

  28. R.T. Parmley, Passive orbital disconnect strut (PODS-III), structural and thermal test program. NASA CR 166473 (March 1983)

    Google Scholar 

  29. R.T. Parmley, Unique cryogenic features of the gravity probe B experiment. Adv. Cryo. Eng. 33 (1988)

    Google Scholar 

  30. J.W. Ekin, Experimental Techniques in Low-Temperature Measurements (Oxford University Press, Oxford, 2006)

    Google Scholar 

  31. F. Haug, A. McInturff, Measurement of pressure transmission in long capillaries. Adv. Cryo. Eng. 35 (1990)

    Google Scholar 

  32. R.C. Dhuley, S.W. Van Sciver, Sudden vacuum loss in long liquid helium cooled tubes. IEEE Trans. Appl. Supercond. 25, #3 (2015)

    Google Scholar 

  33. S.W. Van Sciver, D.S. Holmes, X. Huang, J.G. Weisend II, He II flowmetering. Cryogenics 31, 75–86 (1991)

    Article  ADS  Google Scholar 

  34. T. de Jonge et al., Development of a mass flowmeter based on the Coriolis acceleration for liquid, supercritical and superfluid helium. Adv. Cryo. Eng. 39 (1994)

    Google Scholar 

  35. K. Kajikawa et al., Fundamental investigation of a superconducting level sensor for liquid hydrogen with MgB2 wire. J. Phys. Conf. Ser. 97 (2008)

    Google Scholar 

  36. R. Kurunanithi el al., Calibration of an HTS based LOX 400 mm level sensor, in Proceedings of ICEC 25: Physics Procedia (2015), p. 67

    Google Scholar 

  37. I.V. Velichkov, V.M. Drobin, Capacitive level meters for cryogenic fluids with continuous read-out. Cryogenics 30 (June 1990)

    Google Scholar 

  38. R. Sawada et al., Capacitive level meter for liquid rare gases. Cryogenics 43, 449–450 (2003)

    Article  ADS  Google Scholar 

  39. M.J. DiPirro, A.T. Serlemitsos, Discrete liquid/vapor detectors for use in liquid helium. Adv. Cryo. Eng. 35 (1990)

    Google Scholar 

  40. 2015 Buyer’s Guide (Cryogenic Society of America, 2015). http://www.cryogenicsociety.org/buyers_guide/

  41. Advances in Cryogenic Engineering 1–62 (1955–2016)

    Google Scholar 

  42. Proceedings of the 25th ICEC, Physics Procedia 67 (2015). http://www.sciencedirect.com/science/journal/18753892/67

  43. Cryogenics. http://www.journals.elsevier.com/cryogenics/

  44. J.D. Fuerst et al., Niobium to stainless steel braze transition development, in Proceedings of the 11th Workshop on RF Superconductivity

    Google Scholar 

  45. W. Soyars et al., Superfluid helium testing of a stainless steel to titanium piping transition joint. Adv. Cryo. Eng. 55A (2010)

    Google Scholar 

  46. An example of commercially available transition joints can be found at: http://www.rbdh.com/Bimetallic-transition-joints,164.html

  47. See, for example, ConFlat flanges from various manufacturers

    Google Scholar 

  48. G. McIntosh, Cryostat design, in The Handbook of Cryogenic Engineering, ed. by J.G. Weisend II (Taylor & Francis, New York, 1998)

    Google Scholar 

  49. E. Pyata et al., XFEL injector-1 cryogenic equipment. Phys. Procedia 67, 868–873 (2015)

    Article  ADS  Google Scholar 

  50. C. Parente et al., The local helium compound transfer lines for the large hadron collider cryogenic system. Adv. Cryo. Eng. 51 (2006)

    Google Scholar 

  51. S. Claudet et al., Two 100 m invar transfer lines at CERN: design principles and operating experience for helium refrigeration, in Proceedings of ICEC 20 (2005)

    Google Scholar 

  52. A. Thakar et al., Design and analysis of a bellows free cryogenic transfer line, in Proceedings of International Conference on Current Trends in Technology (2011)

    Google Scholar 

  53. L. Serio, Challenges for ITER cryogenics. Adv. Cryo. Eng. (2010)

    Google Scholar 

  54. An example of commercially available transfer lines may be found at: http://www.nexans.de/eservice/Germany-en/navigate_315900/Cryogenic_Systems.html

  55. F.J. Edeskuty, W.F Stewart, Safety in the Handling of Cryogenic Fluids (Springer, 1996)

    Google Scholar 

  56. M.G. Zabetakis, Safety with Cryogenic Fluids (Plenum Press, 1967)

    Google Scholar 

  57. F.J. Edeskuty, M. Daugherty, Safety, in The Handbook of Cryogenic Engineering, ed. by J.G. Weisend II (Taylor & Francis, 1998)

    Google Scholar 

  58. T.M. Flynn, Safety with cryogenic systems (Chap. 10), in Cryogenic Engineering (Marcel Dekker, 1997)

    Google Scholar 

  59. Cryogenic Safety Manual: A Guide to Good Practices (British Cryogenics Council, 1991)

    Google Scholar 

  60. J.G. Weisend II (ed.), Cryogenic Safety—A Guide to Best Practice in the Lab and Workplace (Springer, in preparation)

    Google Scholar 

  61. Boiler & Pressure Vessel Code 2015 (ASME, 2015)

    Google Scholar 

  62. Pressure Equipment Directive, PED 2014/68/EU

    Google Scholar 

  63. C. Heidt, S. Grohmann, M. Sußer, Modeling of the pressure increase in liquid helium cryostats after failure of the insulating vacuum Adv. Cryo. Eng. 59B (2014)

    Google Scholar 

  64. EN 13648-1:2008, Cryogenic vessels. Safety devices for protection against excessive pressure. Safety valves for cryogenic service

    Google Scholar 

  65. J.G. Weisend II, Thermoacoustic oscillations, in Cold Facts Winter 2013 (2013)

    Google Scholar 

  66. Y. Gu, Thermal Acoustic Oscillations in Cryogenic Systems, PhD Thesis, University of Colorado, 1993

    Google Scholar 

  67. Y. Gu, K.D. Timmerhaus, Experimental verification of stability characteristics for thermal acoustic oscillations in a liquid helium system. Adv. Cryo. Eng. 39 (1994)

    Google Scholar 

  68. T. Yazaki et al., Stability limit for thermally driven acoustic oscillation. Cryogenics (July 1979)

    Google Scholar 

  69. T.J. Miller, Y. Gu, Elimination of thermal acoustic oscillations in cryogenic pumps. Adv. Cryo. Eng. 51 (2006)

    Google Scholar 

  70. N. Dittmar et al., Onset of thermoacoustic oscillations in flexible transfer lines for liquid helium, in Proceedings of ICEC 25—Physics Procedia 67 (2015)

    Google Scholar 

  71. V. Chohan et al., LHC magnet tests: operational techniques and empowerment for successful completion

    Google Scholar 

  72. M. Wiencek et al., Tests of the accelerating cryomodules for the European X-ray free electron laser, in Proc. of SRF 2013 (2013)

    Google Scholar 

  73. J. Hogan et al., 12 GeV upgrade project—cryomodule production, in Proceedings of IPAC 2012 (2012)

    Google Scholar 

  74. LCLS-II Final Design Report (LCLSII-1.1-DR-0251-R0), 22 Nov 2015

    Google Scholar 

  75. W. Hees et al., The ESS cryomodule test stand, in Proceedings of ICEC 25—Physics Procedia, vol. 67 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Weisend II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weisend, J.G. (2016). Principles of Cryostat Design. In: Weisend II, J. (eds) Cryostat Design. International Cryogenics Monograph Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31150-0_1

Download citation

Publish with us

Policies and ethics