Skip to main content

Physical Changes in Adolescence

  • Chapter
  • First Online:
Congenital Heart Disease and Adolescence

Abstract

In this chapter we will address the physical changes occurring during adolescence, mainly focusing on the cardiovascular system.

Knowing and understanding the normal changes that occur during this period is essential for correct interpretation and reporting of the cardiovascular evaluation. Moreover, some important differences exist between pediatric and adult cardiologists in assessment and reporting of the cardiovascular system. While pediatric cardiologists are trained to take growth into account in their assessment, this is mostly not the case (and not necessary) with adult cardiologists. Acknowledging one another’s differences is indispensable for correct management during the process of transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbassi V (1998) Growth and normal puberty. Pediatrics 102(2 Pt 3):507–511

    CAS  PubMed  Google Scholar 

  2. Brooks-Gunn J, Reiter E (1990) The role of pubertal processes in early adolescent transition. In: Feldman S, Elliott G (eds) At the threshold: the developing adolescent. University Press, Cambridge

    Google Scholar 

  3. Burnham N et al (2010) Genetic factors are important determinants of impaired growth after infant cardiac surgery. J Thorac Cardiovasc Surg 140(1):144–149

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buys R et al (2012) Serial exercise testing in children, adolescents and young adults with Senning repair for transposition of the great arteries. BMC Cardiovasc Disord 12:88

    Article  PubMed  PubMed Central  Google Scholar 

  5. Campens L et al (2014) Reference values for echocardiographic assessment of the diameter of the aortic root and ascending aorta spanning all age categories. Am J Cardiol 114(6):914–920

    Article  PubMed  Google Scholar 

  6. Cheung MMH et al (2003) Long term somatic growth after repair of tetralogy of Fallot: evidence for restoration of genetic growth potential. Heart (Br Card Soc) 89(11):1340–1343

    Article  CAS  Google Scholar 

  7. Chi LA et al (1997) Menstrual function and pubertal development in congenital cardiac patients. J Pediatr Adolesc Gynecol 10(3):164

    Article  Google Scholar 

  8. Colan SD et al (2006) Validation and re-evaluation of a discriminant model predicting anatomic suitability for biventricular repair in neonates with aortic stenosis. J Am Coll Cardiol 47(9):1858–1865

    Article  PubMed  Google Scholar 

  9. Daymont C et al (2013) Growth in children with congenital heart disease. Pediatrics 131(1):e236–e242

    Article  PubMed  Google Scholar 

  10. de Broux E et al (2000) Growth and pubertal development following pediatric heart transplantation: a 15-year experience at Ste-Justine Hospital. J Heart Lung Transplant Off Publ Int Soc Heart Transpl 19(9):825–833

    Article  Google Scholar 

  11. de Simone G et al (1995) Gender differences in left ventricular growth. Hypertension 26(6):979–983

    Article  PubMed  Google Scholar 

  12. De Wolf D (2011) Long-term outcome of cardio respiratory exercise performance after surgery. Curr Respir Med Rev 7(2):106–112. Available at: http://www.ingentaconnect.com/content/ben/crmr/2011/00000007/00000002/art00007

  13. Devereux RB et al (2012) Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age. Am J Cardiol 110(8):1189–1194

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dickinson DF (2005) The normal ECG in childhood and adolescence. Heart (Br Card Soc) 91(12):1626–1630

    Article  Google Scholar 

  15. Diller G-P et al (2005) Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation 112(6):828–835

    Article  PubMed  Google Scholar 

  16. Fernandes SM et al (2010) Serial cardiopulmonary exercise testing in patients with previous Fontan surgery. Pediatr Cardiol 31(2):175–180

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fleming S et al (2011) Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet 377(9770):1011–1018

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gatzoulis MA et al (1995) Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation 92(2):231–237

    Article  CAS  PubMed  Google Scholar 

  19. Giardini A et al (2008) Natural history of exercise capacity after the Fontan operation: a longitudinal study. Ann Thorac Surg 85(3):818–821

    Article  PubMed  Google Scholar 

  20. Heusch A et al (2014) Health related quality of life after corrective surgery for congenital heart disease. Klin Padiatr 226(5):281–286

    Article  CAS  PubMed  Google Scholar 

  21. Jensen MK et al (2013) Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year follow-up study of clinical screening and predictive genetic testing. Circulation 127(1):48–54

    Article  PubMed  Google Scholar 

  22. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27(4):511–541

    CAS  PubMed  Google Scholar 

  23. Lang RM et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463

    Article  PubMed  Google Scholar 

  24. Lewington S et al (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903–1913

    Article  PubMed  Google Scholar 

  25. Lurbe E et al (2009) Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens 27(9):1719–1742

    Article  CAS  PubMed  Google Scholar 

  26. Mancia G et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34(28):2159–2219

    Article  PubMed  Google Scholar 

  27. Matura LA et al (2007) Aortic dilatation and dissection in Turner syndrome. Circulation 116(15):1663–1670

    Article  PubMed  Google Scholar 

  28. Migliore F et al (2012) Prevalence of cardiomyopathy in Italian asymptomatic children with electrocardiographic T-wave inversion at preparticipation screening. Circulation 125(3):529–538

    Article  PubMed  Google Scholar 

  29. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114(2 Suppl 4th Report):555–576

    Article  Google Scholar 

  30. Nelson MJ, Ragland DR, Syme SL (1992) Longitudinal prediction of adult blood pressure from juvenile blood pressure levels. Am J Epidemiol 136(6):633–645

    CAS  PubMed  Google Scholar 

  31. Park MK, Menard SW, Yuan C (2001) Comparison of auscultatory and oscillometric blood pressures. Arch Pediatr Adolesc Med 155(1):50–53

    Article  CAS  PubMed  Google Scholar 

  32. Pearl W (1996) Effects of gender, age, and heart rate on QT intervals in children. Pediatr Cardiol 17(3):135–136

    Article  CAS  PubMed  Google Scholar 

  33. Rhodes J et al (2006) Sustained effects of cardiac rehabilitation in children with serious congenital heart disease. Pediatrics 118(3):e586–e593

    Article  PubMed  Google Scholar 

  34. Rhodes JF, Hijazi ZM, Sommer RJ (2008) Pathophysiology of congenital heart disease in the adult, part II: simple obstructive lesions. Circulation 117(9):1228–1237

    Article  PubMed  Google Scholar 

  35. Rijnbeek PR et al (2001) New normal limits for the paediatric electrocardiogram. Eur Heart J 22(8):702–711

    Article  CAS  PubMed  Google Scholar 

  36. Rozendaal L et al (1998) Marfan syndrome in children and adolescents: an adjusted nomogram for screening aortic root dilatation. Heart (Br Card Soc) 79(1):69–72

    CAS  Google Scholar 

  37. Rudski LG et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 23(7):685–713; quiz 786–8

    Article  Google Scholar 

  38. Salameh A et al (2008) Normal limits for heart rate as established using 24-hour ambulatory electrocardiography in children and adolescents. Cardiol Young 18(5):467–472

    Article  PubMed  Google Scholar 

  39. Schuurmans FM et al (1998) Long-term growth of children with congenital heart disease: a retrospective study. Acta Paediatr 87(12):1250–1255

    Article  CAS  PubMed  Google Scholar 

  40. Sluysmans T (2005) Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 99(2):445–457

    Article  PubMed  Google Scholar 

  41. Soergel M et al (1997) Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1141 subjects. J Pediatr 130(2):178–184

    Article  CAS  PubMed  Google Scholar 

  42. Sohaib SMA et al (2009) Electrocardiographic (ECG) criteria for determining left ventricular mass in young healthy men; data from the LARGE Heart study. J Cardiovasc Magn Reson 11:2

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun SS et al (2007) Systolic blood pressure in childhood predicts hypertension and metabolic syndrome later in life. Pediatrics 119(2):237–246

    Article  PubMed  Google Scholar 

  44. Thommessen M, Heiberg A, Kase BF (1992) Feeding problems in children with congenital heart disease: the impact on energy intake and growth outcome. Eur J Clin Nutr 46(7):457–464

    CAS  PubMed  Google Scholar 

  45. Varan B, Tokel K, Yilmaz G (1999) Malnutrition and growth failure in cyanotic and acyanotic congenital heart disease with and without pulmonary hypertension. Arch Dis Child 81(1):49–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vigl M et al (2010) Sexuality and reproductive health in women with congenital heart disease. Am J Cardiol 105(4):538–541

    Article  PubMed  Google Scholar 

  47. Vogt KN et al (2007) Somatic growth in children with single ventricle physiology impact of physiologic state. J Am Coll Cardiol 50(19):1876–1883

    Article  PubMed  Google Scholar 

  48. Vos LE et al (2003) Does a routinely measured blood pressure in young adolescence accurately predict hypertension and total cardiovascular risk in young adulthood? J Hypertens 21(11):2027–2034

    Article  CAS  PubMed  Google Scholar 

  49. Wühl E et al (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20(10):1995–2007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie De Backer MD, PhD, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Backer, J., De Wolf, D. (2016). Physical Changes in Adolescence. In: Schwerzmann, M., Thomet, C., Moons, P. (eds) Congenital Heart Disease and Adolescence. Congenital Heart Disease in Adolescents and Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-31139-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31139-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31137-1

  • Online ISBN: 978-3-319-31139-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics