Skip to main content
  • 1822 Accesses

Abstract

A parallel manipulator is a mechanical system formed by two linked platforms, namely, the fixed platform and the moving platform. The moving platform is connected to the fixed platform by at least two independent computer-controlled serial chains or limbs working in parallel. Compared with their serial counterparts, parallel manipulators are essentially more accurate and rigid. Furthermore, the possibility to mount the motors near the fixed platform is an attractive feature of robots with parallel kinematic topologies. Then it can be used in a wide range of applications that require precision and higher payload capacity combined with higher speed. This chapter briefly reviews of some well-known parallel manipulators that are currently considered significant contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-319-31126-5_2) contains supplementary material, which is available to authorized users.

References

  • Angeles, J., Caro, S., Khan, W., & Morozov, A. (2006). The kinetostatic design of an innovative Schönflies motion generator. Proceedings Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(C7), 935–944.

    Google Scholar 

  • Asada, H., & Cro Granito, J. A. (1985). Kinematic and static characterization of wrist joints and their optimal design. In Proceedings IEEE International Conference on Robotics and Automation (pp. 244–250).

    Google Scholar 

  • Bonev, I. A., Chablat, C., & Wenger, P. (2006). Working and assembly modes of the Agile Eye. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May (pp. 2317–2322).

    Google Scholar 

  • Bottema, O., & Roth, B. (1979). Theoretical kinematics. New York: Dover.

    MATH  Google Scholar 

  • Bricard, R. (1897). Mémoire sur la théorie de lóctahèdre articulé. Journal de Mathématiques Pures et Appliqués, 3, 113–150.

    MATH  Google Scholar 

  • Canfield, S. L. (1997). Development of the Carpal Wrist; a symmetric, parallel-architecture robotic wrist. Ph.D. thesis, Virginia Polytechnic Institute and State University Department of Mechanical Engineering.

    Google Scholar 

  • Cappel, K. L. (1967). Motion simulator. U.S. Patent No. 3,295,224, January 3.

    Google Scholar 

  • Clavel, R. (1990). Device for the movement and positioning of an element in space. U.S. Patent No. 4,976,582, December 11.

    Google Scholar 

  • Clavel, R. (1991). Conception d’un robot parallèle rapide à 4 degrés de liberté. Ph.D. thesis, Ecole Polytechique Fédérale de Lausanne (EPFL).

    Google Scholar 

  • Cox, D., & Tesar, D. (1989). The dynamic model of a three degree of freedom parallel robotic shoulder module. In K. Waldron (Ed.), Advanced robotics 1989. Fourth International Conference on Advanced Robotics, Columbus (pp. 475–487). Berlin: Springer.

    Google Scholar 

  • Gosselin, C. M., & Gagné, M. (1995). A closed-form solution for the direct kinematics of a special class of spherical three-degree-of-freedom parallel manipulators. In J.-P. Merlet & B. Ravani (Eds.), Computational Kinematics, Proceedings of the Second Workshop on Computational Kinematics (pp. 231–240). Dordrecht: Kluwer.

    Google Scholar 

  • Gosselin, C. M., & Hamel, J.-F. (1994). The agile eye: a high-performance three-degree-of-freedom camera-orienting device. In Proceedings IEEE International Conference on Robotics and Automation, San Diego (pp. 781–786).

    Google Scholar 

  • Gosselin, C. M., & Lavoie, E. (1993). On the kinematic design of spherical three-degree-of-freedom parallel manipulators. International Journal of Robotics Research, 12(4), 394–402.

    Article  Google Scholar 

  • Gosselin, C. M., St.-Pierre, E., & Gagné, M. (1996). On the development of the Agile Eye. Robotics and Automation Magazine, IEEE, 3(4), 29–37.

    Google Scholar 

  • Gough, V. E., & Whitehall, S. G. (1962). Universal tyre testing machine. In G. Eley (Ed.), Proceedings of 9th International Automobile Technical Congress, discussion pp. 250ff; Fédération Internationale des Sociétés d’Ingénieurs des Techniques de lÁutomobile (FISITA) (pp. 117–137). IMechE 1, London.

    Google Scholar 

  • Gwinnett, J. E. (1931). Amusement devices. U.S. Patent No. 1,789,680, January 20.

    Google Scholar 

  • Hervé, J. (1999). The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mechanism and Machine Theory, 34(5), 719–730.

    Article  MathSciNet  MATH  Google Scholar 

  • Huxley, G. L. (1960) The geometrical work of Christopher Wren. Scripta Mathematica, 25, 201–208.

    MathSciNet  MATH  Google Scholar 

  • Kim, H. S., & Tsai, L.-W. (2003). Design optimization of a Cartesian parallel manipulator. ASME Journal of Mechanical Design, 125(1), 43–51.

    Article  Google Scholar 

  • Kong, X., & Gosselin, C. M. (2002a). Type synthesis of linear translational parallel manipulators. In J. Lenarčič & F. Thomas (Eds.), Advances in robot kinematics—theory and applications (pp. 411–420). Dordrecht: Kluwer.

    Google Scholar 

  • Kong, X., & Gosselin, C. M. (2002b). A class of 3-DOF translational parallel manipulators with linear input-output equations. In Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec City, Canada (pp. 25–32).

    Google Scholar 

  • Kong, X., & Gosselin, C. M. (2002c). Kinematics and singularity analysis of 3-CRR 3-DOF translational parallel manipulators. International Journal of Robotics Research, 21(9), 791–798.

    Article  Google Scholar 

  • Kong, X., & Gosselin, C. M. (2004). Type synthesis of 3-DOF translational parallel manipulators based on screw theory. ASME Journal of Mechanical Design, 126(1), 83–92.

    Article  Google Scholar 

  • Lee, C.-C., & Hervé, J. (2005). On the enumeration of Schönflies motion generators. In Ninth IFToMM International Symposium on Theory of Machines and Mechanisms, Bucharest, Romania.

    Google Scholar 

  • Li, W., Gao, F., & Zhang, J. (2005a). R-CUBE, a decoupled parallel manipulator only with revolute joints. Mechanism and Machine Theory, 40(4), 467–473.

    Article  MATH  Google Scholar 

  • Li, W., Gao, F., & Zhang, J. (2005b). A three-DOF translational manipulator with decoupled geometry. Robotica, 23(6), 805–808.

    Article  Google Scholar 

  • Pierrot, F., & Company, O. (1999). H4: a new family of 4-DOF parallel robots. In Proceedings 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta (pp. 508–513).

    Google Scholar 

  • Pierrot, F., Nabat, V., Company, O., Krut, S., & Poignet, P. (2009). Optimal design of a 4-DOF parallel manipulator: from academia to industry. IEEE Transactions on Robotics, 25(2), 213–224.

    Google Scholar 

  • Pollard, W. L. G. (1940). Spray painting machine. U.S. Patent No. 2,213,108, August 26.

    Google Scholar 

  • Rosheim, M. E. (1989). Robot wrist actuators. New York: Wiley.

    Google Scholar 

  • Stewart, D. (1965–1966). A platform with six degrees of freedom. Proceedings Institution of Mechanical Engineers, 180(1), 371–386.

    Google Scholar 

  • Vischer, P. (1995). Argos: a novel parallel spherical structure. Technical Report 95-03, Ecole Polytechique Fédérale de Lausanne (EPFL).

    Google Scholar 

  • Vischer, P. (1996). Improving the accuracy of parallel robots. Ph.D. thesis, document 1570, Ecole Polytechique Fédérale de Lausanne (EPFL).

    Google Scholar 

  • Vischer, P., & Clavel, R. (2000). Argos: a novel 3-DOF parallel wrist mechanism. International Journal of Robotics Research, 19(1), 5–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1 Electronic Supplementary Material

Video 2.1

2(3UPS)hexapod.avi

Video 2.2

2RPS.avi

Video 2.3

3PPS_3RPS.avi

Video 2.4

3SPR_RRRPRP.avi

Video 2.5

DeLiA1.avi

Video 2.6

DeLiA2.avi

Video 2.7

DeLiA3.avi

Video 2.8

HexapodMixed.avi

Video 2.9

LinceJJP_complex_motions.avi

Video 2.10

LinceJJP_drilling.avi

Video 2.11

SphericalPM.avi

Video 2.12

Stewart_type_platform.avi

Video 2.13

TPM1.avi

Video 2.14

TPM2.avi

Video 2.15

TPM3.avi

Video 2.16

TPM4.avi

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gallardo-Alvarado, J. (2016). An Overview of Parallel Manipulators. In: Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-31126-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31126-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31124-1

  • Online ISBN: 978-3-319-31126-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics