Skip to main content

Applications of Fuzzy Mathematical Programming Approaches in Supply Chain Planning Problems

  • Chapter
  • First Online:
Fuzzy Logic in Its 50th Year

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 341))

Abstract

Supply chain planning includes numerous decision problems over strategic (i.e. long-term), tactical (i.e. mid-term) and operational (i.e. short-term) planning horizons in a supply chain. As most of supply chain planning problems deal with decision making in real world while configuring future situations, relevant data should be predicted and described for multiple time periods in the future. Such prediction and description involve imprecision and vagueness due to errors and absence of sharp boundaries in the subjective data and/or insufficient or unreliable objective data. If the uncertainty in supply chain planning problems is to be neglected by the decision maker, the plausible performance of supply chain in future conditions will be in doubt. This is why considerable body of the recent literature account for uncertainty through applying different uncertainty programming approaches with respect to the nature of uncertainty. This chapter aims to provide useful and updated information about different sources and types of uncertainty in supply chain planning problems and the strategies used to confront with uncertainty in such problems. A hyper methodological framework is proposed to cope with uncertainty in supply chain planning problems. Also, among the different uncertainty programming approaches, various fuzzy mathematical programming methods extended in the recent literature are introduced and a number of them are elaborated. Finally, a useful case study is illustrated to present the practicality of fuzzy programming methods in the area of supply chain planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amid, A., Ghodsypour, S.H., O’Brien, C.: Fuzzy multi-objective linear model for supplier selection in a supply chain. Int. J. Prod. Econ. 104(2), 394–407 (2006)

    Article  Google Scholar 

  2. Buckley, J.J.: Possibilistic linear programming with triangular fuzzy numbers. Fuzzy Sets Syst. 26(1), 135–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cadenas, J.M., Verdegay, J.L.: Using fuzzy numbers in linear programming. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 27, 1016–1022 (1997)

    Article  Google Scholar 

  4. Cardoso, S.R., Barbosa-Póvoa, A.P.F.D., Relvas, S.: Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. Eur. J. Oper. Res. 226(3), 436–451 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakraborty, D.: Redefining chance-constrained programming in fuzzy environment. Fuzzy Sets Syst. 125(3), 327–333 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakraborty, D., Rao, K.R., Tiwani, R.N.: Interactive decision making in mixed fuzzy stochastic environment. Oper. Res. 31, 89–107 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Chanas, S.: The use of parametric programming in fuzzy linear programming. Fuzzy Sets Syst. 11(1), 229–241 (1983)

    MATH  Google Scholar 

  8. Chen, C.L., Wang, B.W., Lee, W.C.: The optimal profit distribution problem in a multi-echelon supply chain network: a fuzzy optimization approach. In: Proceedings of Knowledge Based Intelligent Information and Engineering Systems, Pt 1, 2773, pp. 1289–1295. Springer (2003)

    Google Scholar 

  9. Christopher, M., Peck, H.: Building the resilient supply chain. Int. J. Logistics Manage. 15(2), 1–14 (2004)

    Article  Google Scholar 

  10. Davis, T.: Effective supply chain management. Sloan Manage. Rev. 34, 35–36 (1993)

    Google Scholar 

  11. Díaz-Madroñero, M., Peidro, D., Mula, J.: A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Appl. Math. Model. 38(23), 5705–5725 (2014)

    Article  MathSciNet  Google Scholar 

  12. Dubois, D., Prade, H.: Decision evaluation methods under uncertainty and imprecision. In: Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making, pp. 48–65. Springer, Berlin, Heidelberg (1988)

    Google Scholar 

  13. Dubois, D.: Linear programming with fuzzy data. In: Bezdek, J.C. (ed.) The Analysis of Fuzzy Information—Vol. 3: Applications in Engineering and Science, pp. 241–263. CRC Press, Boca Raton, FL (1987)

    Google Scholar 

  14. Dubois, D., Prade, H.: Linear programming with fuzzy data. Anal. Fuzzy Inf. 3, 241–263 (1987)

    MathSciNet  Google Scholar 

  15. Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets Syst. 24(3), 279–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dubois, D., Prade, H.: Possibility Theory. Plenum, New York (1988)

    Book  MATH  Google Scholar 

  17. Fallah, H., Eskandari, H., Pishvaee, M.S.: Competitive closed-loop supply chain network design under uncertainty. J. Manuf. Syst. (2015)

    Google Scholar 

  18. Fuller, R.: On a spatial type of fuzzy linear programming. In: Colloquia Mathematica Societatis Janos Bolyai, vol. 49 (1986)

    Google Scholar 

  19. Galbraith, J.R.: Designing Complex Organizations, pp. 187–203. Addison-Wesley Longman Publishing Co., Inc. (1973)

    Google Scholar 

  20. Giannoccaro, I., Pontrandolfo, P., Scozzi, B.: A fuzzy echelon approach for inventory management in supply chains. Eur. J. Oper. Res. 149(1), 185–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gosling, J., Purvis, L., Naim, M.M.: Supply chain flexibility as a determinant of supplier selection. Int. J. Prod. Econ. 128(1), 11–21 (2010)

    Article  Google Scholar 

  22. Gupta, A., Maranas, C.D.: Managing demand uncertainty in supply chain planning. Comput. Chem. Eng. 27(8), 1219–1227 (2003)

    Article  Google Scholar 

  23. Haimes, Y.Y.: Risk modeling, assessment, and management, vol. 40. Wiley (2005)

    Google Scholar 

  24. Heilpern, S.: The expected value of a fuzzy number. Fuzzy Sets Syst. 47, 81–86 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirota, K.: Concepts of probabilistic sets. Fuzzy Event J. Math. Anal. Appl. 23, 421–427 (1981)

    MathSciNet  MATH  Google Scholar 

  26. Ho, C.J.: Evaluating the impact of operating environments on MRP system nervousness. Int. J. Prod. Res. 27(7), 1115–1135 (1989)

    Article  Google Scholar 

  27. Hsu, H.M., Wang, W.P.: Possibilistic programming in production planning of assemble-to-order environments. Fuzzy Sets Syst. 119(1), 59–70 (2001)

    Article  MathSciNet  Google Scholar 

  28. Jiménez, M.: Ranking fuzzy numbers through the comparison of its expected intervals. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 4(04), 379–388 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiménez, M., Arenas, M., Bilbao, A., Rodrı, M.V.: Linear programming with fuzzy parameters: an interactive method resolution. Eur. J. Oper. Res. 177(3), 1599–1609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Katagiri, H., Ishii, H.: Linear programming problem with fuzzy random constraint. Mathematica japonicae 52(1), 123–129 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Kleindorfer, P.R., Saad, G.H.: Managing disruption risks in supply chains. Prod. Oper. Manage. 14(1), 53–68 (2005)

    Article  Google Scholar 

  32. Klibi, W., Martel, A., Guitouni, A.: The design of robust value-creating supply chain networks: a critical review. Eur. J. Oper. Res. 203(2), 283–293 (2010)

    Article  MATH  Google Scholar 

  33. Kumar, M., Vrat, P., Shankar, R.: A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput. Ind. Eng. 46(1), 69–85 (2004)

    Article  Google Scholar 

  34. Kumar, M., Vrat, P., Shankar, R.: A fuzzy programming approach for vendor selection problem in a supply chain. Int. J. Prod. Econ. 101(2), 273–285 (2006)

    Article  Google Scholar 

  35. Kwakernaak, H.: Fuzzy random variables—I definitions and theorems. Inf. Sci. 15(1), 1–29 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kwakernaak, H.: Fuzzy random variables—II algorithms and examples for the discrete case. Inf. Sci. 17(3), 253–278 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lai, Y.J., Hwang, C.L.: A new approach to some possibilistic linear programming problems. Fuzzy Sets Syst. 49(2), 121–133 (1992)

    Article  MathSciNet  Google Scholar 

  38. Lai, Y.J., Hwang, C.L.: Fuzzy Mathematical Programming, pp. 74–186. Springer, Berlin, Heidelberg (1992)

    Google Scholar 

  39. Liang, T.F.: Distribution planning decisions using interactive fuzzy multi-objective linear programming. Fuzzy Sets Syst. 157(10), 1303–1316 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liang, T.F.: Integrating production-transportation planning decision with fuzzy multiple goals in supply chains. Int. J. Prod. Res. 46(6), 1477–1494 (2008)

    Article  MATH  Google Scholar 

  41. Liu, S.T., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661–674 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, B., Liu, B.: Theory and Practice of Uncertain Programming, pp. 78–81. Physica-verlag, Heidelberg (2002)

    Book  MATH  Google Scholar 

  43. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. Fuzzy Syst. IEEE Trans. 10(4), 445–450 (2002)

    Article  Google Scholar 

  44. Luhandjula, M. K.: Linear programming under randomness and fuzziness. Fuzzy Sets Syst. 10(1), 45-55 (1983)

    Google Scholar 

  45. Luhandjula, M.K.: Fuzzy optimization: an appraisal. Fuzzy Sets Syst. 30(3), 257–282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Luhandjula, M.K.: Optimisation under hybrid uncertainty. Fuzzy Sets Syst. 146(2), 187–203 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Luhandjula, M. K.: Fuzzy stochastic linear programming: survey and future research directions. Eur. J. Oper. Res. 174(3), 1353–1367 (2006)

    Google Scholar 

  48. Luhandjula, M.K., Djungu, A.O., Kasoro, N.M.: On fuzzy probabilistic linear programming. Ann. Fac. Sci. Univ. Kinshasa 3, 45–60 (1997)

    MathSciNet  MATH  Google Scholar 

  49. Mason-Jones, R., Towill, D.R.: Shrinking the supply chain uncertainty circle. IOM Control 24(7), 17–22 (1998)

    Google Scholar 

  50. Mousazadeh, M., Torabi, S.A., Zahiri, B.: A robust possibilistic programming approach for pharmaceutical supply chain network design. Comput. Chem. Eng. 82, 115–128 (2015)

    Article  Google Scholar 

  51. Mohammadi, M., Torabi, S. A., & Tavakkoli-Moghaddam, R.: Sustainable hub location under mixed uncertainty. Transportat. Res. E- Log. 62, 89–115 (2014)

    Google Scholar 

  52. Mula, J., Poler, R., Garcia-Sabater, J.P.: Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. Int. J. Prod. Res. 46(20), 5589–5606. 74–97 (2008)

    Google Scholar 

  53. Mula, J., Poler, R., Garcia, J.P.: MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst. 157, 74–97 (2006)  

    Article  MathSciNet  MATH  Google Scholar 

  54. Mula, J., Peidro, D., Poler, R.: The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. Int. J. Prod. Econ. 128(1), 136–143 (2010)

    Article  MATH  Google Scholar 

  55. Negi, D.S.: Fuzzy Analysis and Optimization. UMI (1996)

    Google Scholar 

  56. Paksoy, T., Pehlivan, N.Y., Özceylan, E.: Application of fuzzy optimization to a supply chain network design: a case study of an edible vegetable oils manufacturer. Appl. Math. Model. 36(6), 2762–2776 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Peidro, D., Mula, J., Poler, R., Verdegay, J.L.: Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets Syst. 160(18), 2640–2657 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Peidro, D., Mula, J., Poler, R., Lario, F.C.: Quantitative models for supply chain planning under uncertainty: a review. Int. J. Adv. Manuf. Technol. 43(3–4), 400–420 (2009)

    Article  Google Scholar 

  59. Pishvaee, M.S., Khalaf, M.F.: Novel robust fuzzy mathematical programming methods. Appl. Math. Model. 40(1), 407-418 (2016)

    Google Scholar 

  60. Pishvaee, M.S., Torabi, S.A.: A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets Syst. 161(20), 2668–2683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Pishvaee, M.S., Jolai, F., Razmi, J.: A stochastic optimization model for integrated forward/reverse logistics network design. J. Manuf. Syst. 28(4), 107–114 (2009)

    Article  Google Scholar 

  62. Pishvaee, M.S., Rabbani, M., Torabi, S.A.: A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl. Math. Model. 35(2), 637–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Pishvaee, M.S., Razmi, J., Torabi, S.A.: Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy Sets Syst. 206, 1–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Pishvaee, M.S., Torabi, S.A., Razmi, J.: Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 62(2), 624–632 (2012)

    Article  Google Scholar 

  65. Pishvaee, M.S., Razmi, J., Torabi, S.A.: An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: a case study of medical needle and syringe supply chain. Transp. Res. Part E Logistics Transp. Rev. 67, 14–38 (2014)

    Article  Google Scholar 

  66. Prater, E., Biehl, M., Smith, M.A.: International supply chain agility-tradeoffs between flexibility and uncertainty. Int. J. Oper. Prod. Manage. 21(5/6), 823–839 (2001)

    Article  Google Scholar 

  67. Qin, Z., Ji, X.: Logistics network design for product recovery in fuzzy environment. Eur. J. Oper. Res. 202(2), 479–490 (2010)

    Article  MATH  Google Scholar 

  68. Ramík, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16(2), 123–138 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ritchie, B., Brindley, C.: Supply chain risk management and performance: a guiding framework for future development. Int. J. Oper. Prod. Manage. 27(3), 303–322 (2007)

    Article  MATH  Google Scholar 

  70. Rommelfanger, H., Hanuscheck, R., Wolf, J.: Linear programming with fuzzy objectives. Fuzzy Sets Syst. 29(1), 31–48 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rosenhead, J., Elton, M., Gupta, S.K.: Robustness and optimality as criteria for strategic decisions. Oper. Res. Q, 413–431 (1972)

    Google Scholar 

  72. Sakawa, M., Nishizaki, I., Uemura, Y.: Fuzzy programming and profit and cost allocation for a production and transportation problem. Eur. J. Oper. Res. 131(1), 1–15 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sawhney, R.: Interplay between uncertainty and flexibility across the value-chain: towards a transformation model of manufacturing flexibility. J. Oper. Manage. 24(5), 476–493 (2006)

    Article  Google Scholar 

  74. Selim, H., Ozkarahan, I.: A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach. Int. J. Adv. Manuf. Technol. 36, 401–418 (2008)

    Article  Google Scholar 

  75. Selim, H., Araz, C., Ozkarahan, I.: Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp. Res. Part E Logistics Transp. Rev. 44(3), 396–419 (2008)

    Article  Google Scholar 

  76. Simangunsong, E., Hendry, L.C., Stevenson, M.: Supply-chain uncertainty: a review and theoretical foundation for future research. Int. J. Prod. Res. 50(16), 4493–4523 (2012)

    Article  Google Scholar 

  77. Stewart, T.J.: Dealing with uncertainties in MCDA. In: Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 445–466. Springer, New York (2005)

    Google Scholar 

  78. Tanaka, H., Ichihashi, H., Asai, K.: A value of information in FLP problems via sensitivity analysis. Fuzzy Sets Syst. 18(2), 119–129  (1986)

    Google Scholar 

  79. Tang, C.S.: Perspectives in supply chain risk management. Int. J. Prod. Econ. 103(2), 451–488 (2006)

    Article  Google Scholar 

  80. Torabi, S.A., Baghersad, M., Mansouri, S.A.: Resilient supplier selection and order lot-sizing under operational and disruption risks. Transp. Res. Part E Logistics Transp. Rev. 79, 22–48 (2015)

    Article  Google Scholar 

  81. Torabi, S.A., Hassini, E.: An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159(2), 193–214 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. Torabi, S.A., Namdar, J., Hatefi, S.M.: An enhanced possibilistic programming approach for reliable closed-loop supply chain network design under operational and disruption risks. Int. J. Prod. Res.  54(5), 1358–1387 (2016)

    Google Scholar 

  83. Torabi, S.A., Ebadian, M., Tanha, R.: Fuzzy hierarchical production planning (with a case study). Fuzzy Sets Syst. 161, 1511–1529 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  84. Vafa Arani H., Torabi S.A.: Integrated Material-Financial Supply Chain Master Planning Under Mixed Uncertainty. Working paper, (2015)

    Google Scholar 

  85. Van der Vaart, J.T., De Vries, J., Wijngaard, J.: Complexity and uncertainty of materials procurement in assembly situations. Int. J. Prod. Econ. 46, 137–152 (1996)

    Article  Google Scholar 

  86. Van der Vorst, J.G., Beulens, A.J.: Identifying sources of uncertainty to generate supply chain redesign strategies. Int. J. Phys. Distrib. Logistics Manage. 32(6), 409–430 (2002)

    Article  Google Scholar 

  87. Verdegay, J.L.: Fuzzy mathematical programming. Fuzzy Inf. Decis. Process. 231, 237 (1982)

    MATH  Google Scholar 

  88. Wang, R.C., Liang, T.F.: Applying possibilistic linear programming to aggregate production planning. Int. J. Prod. Econ. 98(3), 328–341 (2005)

    Article  Google Scholar 

  89. Werners, B.: Interactive multiple objective programming subject to flexible constraints. Eur. J. Oper. Res. 31(3), 342–349 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  90. World Health Organization (WHO): Safe Management of Bio-medical Sharps Waste in India: A Report on Alternative Treatment and Non-burn Disposal Practices. WHO Regional Office for South-East Asia, New Delhi (2005)

    Google Scholar 

  91. Xu, J., & Zhou, X.: Approximation based fuzzy multi-objective models with expected objectives and chance constraints: Application to earth-rock work allocation. Information Sciences, 238, 75–95 (2013)

    Google Scholar 

  92. Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24(2), 143–161 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  93. Yager, R.: Ranking fuzzy subsets over the unit interval. In: 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, No. 17, pp. 1435–1437 (1978)

    Google Scholar 

  94. Zadeh, L. A.: Probability measures of fuzzy events. J. Math Anal. Appl. 23(2), 421–427 (1968)

    Google Scholar 

  95. Zahiri, B., Tavakkoli-Moghaddam, R., Pishvaee, M.S.: A robust possibilistic programming approach to multi-period location-allocation of organ transplant centers under uncertainty. Comput. Ind. Eng. 74, 139–148 (2014)

    Article  Google Scholar 

  96. Zimmermann, H.J.: Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2(1), 209–215 (1975)

    Article  MATH  Google Scholar 

  97. Zimmermann, H.J.: Applications of fuzzy set theory to mathematical programming. Inf. Sci. 36(1), 29–58 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  98. Zimmermann, H.J.: Fuzzy Set theory—And Its Applications, 3rd edn. Kluwer Academic Publisher (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Torabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Naderi, M.J., Pishvaee, M.S., Torabi, S.A. (2016). Applications of Fuzzy Mathematical Programming Approaches in Supply Chain Planning Problems. In: Kahraman, C., Kaymak, U., Yazici, A. (eds) Fuzzy Logic in Its 50th Year. Studies in Fuzziness and Soft Computing, vol 341. Springer, Cham. https://doi.org/10.1007/978-3-319-31093-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31093-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31091-6

  • Online ISBN: 978-3-319-31093-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics