Fuzzy Sets in the Evaluation of Socio-Ecological Systems: An Interval-Valued Intuitionistic Fuzzy Multi-criteria Approach

  • Beyzanur Çayır Ervural
  • Bilal Ervural
  • Cengiz KahramanEmail author
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 341)


In recent days, the use of the fuzzy set theory to deal with social complexity has become more attractive as a research area to academics who wish to contribute to sustainable development. The socio-ecological systems are one of the well-known sub-disciplines of social science which is very critical issue to maintain sustainability and this concept basically concerns with the human-environment interactions. These systems involve various stakeholders with different levels of knowledge and experience from diverse social platforms. The basic characteristic of these systems is identified as having high level of uncertainty and incomplete information. The main purpose of this chapter is to demonstrate how to incorporate fuzzy sets theory into social sciences. In this chapter, an illustrative example which consists of a wide variety of social actors is used to evaluate sustainable management options utilizing the extended technique for order preference by similarity to ideal solution (TOPSIS) method for interval valued intuitionistic fuzzy multi-criteria group decision making.


Socio-ecological systems Interval-valued intuitionistic fuzzy sets Extended TOPSIS Multi-criteria decision making 


  1. 1.
    Ahn, J., Han, K., Oh, S., Lee, C.: An application of interval-valued intuitionistic fuzzy sets for medical diagnosis of headache. Int. J. Innov. Comput. Inf. Control, 2755–2762 (2011)Google Scholar
  2. 2.
    Ananda, J., Herath, G.: A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecol. Econ. 68, 2535–2548 (2009). doi: 10.1016/j.ecolecon.2009.05.010 CrossRefGoogle Scholar
  3. 3.
    Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343–349 (1989). doi: 10.1016/0165-0114(89)90205-4 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986). doi: 10.1016/S0165-0114(86)80034-3 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bell, N., Schuurman, N., Hayes, M.V.: Using GIS-based methods of multicriteria analysis to construct socio-economic deprivation indices. Int. J. Health Geogr. 6, 17 (2007). doi: 10.1186/1476-072X-6-17 CrossRefGoogle Scholar
  6. 6.
    Berkes, F., Folke, C. (eds.): Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience, Transferred to Digital Printing. Cambridge Univ. Press, Cambridge (2002)Google Scholar
  7. 7.
    Bryan, B.A., Crossman, N.D.: Systematic regional planning for multiple objective natural resource management. J. Environ. Manage. 88, 1175–1189 (2008). doi: 10.1016/j.jenvman.2007.06.003 CrossRefGoogle Scholar
  8. 8.
    Buchholz, T., Rametsteiner, E., Volk, T.A., Luzadis, V.A.: Multi Criteria Analysis for bioenergy systems assessments. Energy Policy 37, 484–495 (2009). doi: 10.1016/j.enpol.2008.09.054 CrossRefGoogle Scholar
  9. 9.
    Castanon-Puga, M., Gaxiola-Pacheco, C., Castro, J.R., Martinez, R.J., Flores, D.-L.: Towards A Multi-Dimensional Modelling Of Complex Social Systems Using Data Mining And Type-2 Neuro-Fuzzy System: Religious Affiliation Case Of Study, pp. 136–142. ECMS (2012) doi: 10.7148/2012-0136-0142
  10. 10.
    Chatterjee, K., Bandyopadhyay, A., Ghosh, A., Kar, S.: Assessment of environmental factors causing wetland degradation, using fuzzy analytic network process: a case study on Keoladeo National Park. India. Ecol. Model. 316, 1–13 (2015). doi: 10.1016/j.ecolmodel.2015.07.029 CrossRefGoogle Scholar
  11. 11.
    Chen, Z., Yang, W.: A new multiple attribute group decision making method in intuitionistic fuzzy setting. Appl. Math. Model. 35, 4424–4437 (2011). doi: 10.1016/j.apm.2011.03.015 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cumming, G.S.: Spatial Resilience in Social-Ecological Systems. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  13. 13.
    del Acebo, E., de la Rosa, J.L.: A Fuzzy System Based Approach to Social Modeling in Multi-agent Systems, p. 463. ACM Press (2002). doi: 10.1145/544741.544850
  14. 14.
    Dimitrov, V., Hodge, B.: Why does fuzzy logic need the challenge of social complexity? In: Dimitrov, V., Korotkich, V. (eds.) Fuzzy Logic, pp. 27–44. Physica-Verlag HD, Heidelberg (2002)Google Scholar
  15. 15.
    Elsawah, S., Guillaume, J.H.A., Filatova, T., Rook, J., Jakeman, A.J.: A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models. J. Environ. Manage. 151, 500–516 (2015). doi: 10.1016/j.jenvman.2014.11.028 CrossRefGoogle Scholar
  16. 16.
    Ferretti, V., Pomarico, S.: Ecological land suitability analysis through spatial indicators: an application of the analytic network process technique and ordered weighted average approach. Ecol. Indic. 34, 507–519 (2013). doi: 10.1016/j.ecolind.2013.06.005 CrossRefGoogle Scholar
  17. 17.
    Folke, C.: Resilience: the emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006). doi: 10.1016/j.gloenvcha.2006.04.002 CrossRefGoogle Scholar
  18. 18.
    Fontana, V., Radtke, A., Bossi Fedrigotti, V., Tappeiner, U., Tasser, E., Zerbe, S., Buchholz, T.: Comparing land-use alternatives: using the ecosystem services concept to define a multi-criteria decision analysis. Ecol. Econ. 93, 128–136 (2013). doi: 10.1016/j.ecolecon.2013.05.007 CrossRefGoogle Scholar
  19. 19.
    Garmendia, E., Gamboa, G.: Weighting social preferences in participatory multi-criteria evaluations: a case study on sustainable natural resource management. Ecol. Econ. 84, 110–120 (2012). doi: 10.1016/j.ecolecon.2012.09.004 CrossRefGoogle Scholar
  20. 20.
    Ginis, L.A.: The use of fuzzy cognitive maps for the analysis of structure of social and economic system for the purpose of its sustainable development. Mediterr. J. Soc. Sci. (2015). doi: 10.5901/mjss.2015.v6n3s5p113
  21. 21.
    Gray, S.A., Gray, S., De Kok, J.L., Helfgott, A.E.R., O’Dwyer, B., Jordan, R., Nyaki, A.: Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems. Ecol. Soc. 20 (2015). doi: 10.5751/ES-07396-200211
  22. 22.
    Gray, S., Chan, A., Clark, D., Jordan, R.: Modeling the integration of stakeholder knowledge in social–ecological decision-making: benefits and limitations to knowledge diversity. Ecol. Model. 229, 88–96 (2012). doi: 10.1016/j.ecolmodel.2011.09.011 CrossRefGoogle Scholar
  23. 23.
    Habib, F., Shokoohi, A.: Classification and resolving urban problems by means of fuzzy approach. World Acad. Sci. Eng. Technol. Int. Sci. Index 36 3(12), 774–781 (2009)Google Scholar
  24. 24.
    Huang, I.B., Keisler, J., Linkov, I.: Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 409, 3578–3594 (2011). doi: 10.1016/j.scitotenv.2011.06.022 CrossRefGoogle Scholar
  25. 25.
    Huang, Z., Chen, S., Xia, Y.: Incorporate intelligence into an ecological system: An adaptive fuzzy control approach. Appl. Math. Comput. 177, 243–250 (2006). doi: 10.1016/j.amc.2005.11.004 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Hwang, C.-L., Yoon, K.: Multiple attribute decision making. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, Heidelberg (1981)Google Scholar
  27. 27.
    Janssen, M.: Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Systems. Edward Elgar Pub, Chelteham, UK, Northhampton, MA (2002)Google Scholar
  28. 28.
    Jeng, D. J.-F., Tzeng, G.-H.: Social influence on the use of Clinical Decision Support Systems: Revising the Unified Theory of Acceptance and Use of Technology by the fuzzy DEMATEL technique. Comput. Ind. Eng. 62, 819–828 (2012)Google Scholar
  29. 29.
    Joerin, F., Thériault, M., Musy, A.: Using GIS and outranking multicriteria analysis for land-use suitability assessment. Int. J. Geogr. Inf. Sci. 15, 153–174 (2001). doi: 10.1080/13658810051030487 CrossRefGoogle Scholar
  30. 30.
    Karnatak, H.C., Saran, S., Bhatia, K., Roy, P.S.: Multicriteria spatial decision analysis in web GIS environment. GeoInformatica 11, 407–429 (2007). doi: 10.1007/s10707-006-0014-8 CrossRefGoogle Scholar
  31. 31.
    Kok, K.: The potential of fuzzy cognitive Maps for semi-quantitative scenario development, with an example from Brazil. Glob. Environ. Change 19, 122–133 (2009). doi: 10.1016/j.gloenvcha.2008.08.003 CrossRefGoogle Scholar
  32. 32.
    Lachassagne, P., Wyns, R., Bérard, P., Bruel, T., Chéry, L., Coutand, T., Desprats, J.-F., Strat, P.: Exploitation of high-yields in hard-rock aquifers: downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water 39, 568–581 (2001). doi: 10.1111/j.1745-6584.2001.tb02345.x CrossRefGoogle Scholar
  33. 33.
    Lee, H., Oh, K., Park, D., Jung, J., Yoon, S.: Fuzzy expert system to determine stream water quality classification from ecological information. Water Sci. Technol. 36, 199–206 (1997). doi: 10.1016/S0273-1223(97)00732-4 CrossRefGoogle Scholar
  34. 34.
    Lin, C.-M., Mon, Y.-J., Maa, J.-H.: Ecological systems control by fuzzy logic controller. Asian J. Control 2, 274–280 (2008). doi: 10.1111/j.1934-6093.2000.tb00032.x CrossRefGoogle Scholar
  35. 35.
    Li, W., Guo, G., Yue, C., Zhao, Y.: Dynamic programming methodology for multi-criteria group decision-making under ordinal preferences. J. Syst. Eng. Electron. 21, 975–980 (2010). doi: 10.3969/j.issn.1004-4132.2010.06.008 CrossRefGoogle Scholar
  36. 36.
    Mago, V.K., Bakker, L., Papageorgiou, E.I., Alimadad, A., Borwein, P., Dabbaghian, V.: Fuzzy cognitive maps and cellular automata: an evolutionary approach for social systems modelling. Appl. Soft Comput. 12, 3771–3784 (2012). doi: 10.1016/j.asoc.2012.02.020 CrossRefGoogle Scholar
  37. 37.
    Malczewski, J.: Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. Geoinformation 8, 270–277 (2006). doi: 10.1016/j.jag.2006.01.003 CrossRefGoogle Scholar
  38. 38.
    Malekmohammadi, B., Rahimi Blouchi, L.: Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. Ecol. Indic. 41, 133–144 (2014). doi: 10.1016/j.ecolind.2014.01.038 CrossRefGoogle Scholar
  39. 39.
    Márquez, B.Y., Castañon-Puga, M., Castro, J.R., Suarez, D.: Methodology for the Modeling of Complex Social System Using Neuro-Fuzzy and Distributed Agencies. J. Sel. Areas Softw. Eng, JSSE (2011)Google Scholar
  40. 40.
    Obiedat, M., Samarasinghe, S.: Fuzzy representation and aggregation of fuzzy cognitive maps. In: 20th International Congress Modeling Simulation (2013)Google Scholar
  41. 41.
    Ocampo-Duque, W., Juraske, R., Kumar, V., Nadal, M., Domingo, J.L., Schuhmacher, M.: A concurrent neuro-fuzzy inference system for screening the ecological risk in rivers. Environ. Sci. Pollut. Res. 19, 983–999 (2012). doi: 10.1007/s11356-011-0595-0 CrossRefGoogle Scholar
  42. 42.
    Oikonomou, V., Dimitrakopoulos, P.G., Troumbis, A.Y.: Incorporating ecosystem function concept in environmental planning and decision making by means of multi-criteria evaluation: the case-study of Kalloni, Lesbos. Greece. Environ. Manage. 47, 77–92 (2011). doi: 10.1007/s00267-010-9575-2 CrossRefGoogle Scholar
  43. 43.
    Olazabal, M., Pascual, U.: Use of fuzzy cognitive maps to study urban resilience and transformation. Innov. Soc. Transit, Environ (2015). doi: 10.1016/j.eist.2015.06.006 Google Scholar
  44. 44.
    Onar, S.C., Oztaysi, B., Otay, İ., Kahraman, C.: Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy (2015). doi: 10.1016/ Google Scholar
  45. 45.
    Park, J.H., Lim, K.M., Park, J.S., Kwun, Y.C.: Distances between interval-valued intuitionistic fuzzy sets. J. Phys: Conf. Ser. 96, 012089 (2008). doi: 10.1088/1742-6596/96/1/012089 Google Scholar
  46. 46.
    Park, J.H., Park, I.Y., Kwun, Y.C., Tan, X.: Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment. Appl. Math. Model. 35, 2544–2556 (2011). doi: 10.1016/j.apm.2010.11.025 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Ragin, C.C.: Fuzzy sets and social research. Sociol. Methods Res. 33, 423–430 (2005). doi: 10.1177/0049124105274499 MathSciNetCrossRefGoogle Scholar
  48. 48.
    Roetter, R.P., Hoanh, C.T., Laborte, A.G., Van Keulen, H., Van Ittersum, M.K., Dreiser, C., Van Diepen, C.A., De Ridder, N., Van Laar, H.H.: Integration of systems network (SysNet) tools for regional land use scenario analysis in Asia. Environ. Model Softw. 20, 291–307 (2005). doi: 10.1016/j.envsoft.2004.01.001 CrossRefGoogle Scholar
  49. 49.
    Social-ecological systems—Stockholm Resilience Centre [WWW Document], 2007. URL Accessed 15 Sept 2015
  50. 50.
    Taghizadeh, H., Fasghandis, G.S., Zeinalzadeh, A.: Evaluation of corporate social responsibility using fuzzy expert system. Res. J. Appl. Sci. Eng. Technol. 6, 3047–3053 (2013)Google Scholar
  51. 51.
    Tan, C.: A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. Expert Syst. Appl. 38, 3023–3033 (2011). doi: 10.1016/j.eswa.2010.08.092 CrossRefGoogle Scholar
  52. 52.
    Vaisey, S.: Fuzzy set theory: applications in the social sciences. Sage. Sociol. Methods Res. 37, 455–457 (2009) (Book Review: Smithson, M., Verkuilen, J.: Thousand Oaks, CA, 2006). doi: 10.1177/0049124107306675
  53. 53.
    Vanwindekens, F.M., Stilmant, D., Baret, P.V.: The relevance of fuzzy cognitive mapping approaches for assessing adaptive capacity and resilience in social-ecological systems. In: Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I. (eds.) Artificial Intelligence Applications and Innovations, pp. 587–596. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  54. 54.
    Wang, W., Xin, X.: Distance measure between intuitionistic fuzzy sets. Pattern Recognit. Lett. 26, 2063–2069 (2005). doi: 10.1016/j.patrec.2005.03.018 CrossRefGoogle Scholar
  55. 55.
    Wozniak, P., Jaworski, T., Fiderek, P., Kucharski, J., Romanowski, A.: clinical activity and schedule management with a fuzzy social preference system. In: Nguyen, N.T., Trawiński, B., Katarzyniak, R., Jo, G.-S. (eds.) Advanced Methods for Computational Collective Intelligence, pp. 345–354. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  56. 56.
    Ye, F.: An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection. Expert Syst. Appl. 37, 7050–7055 (2010). doi: 10.1016/j.eswa.2010.03.013 CrossRefGoogle Scholar
  57. 57.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). doi: 10.1016/S0019-9958(65)90241-X MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Zhang, H., Yu, L.: MADM method based on cross-entropy and extended TOPSIS with interval-valued intuitionistic fuzzy sets. Knowl. Based Syst. 30, 115–120 (2012). doi: 10.1016/j.knosys.2012.01.003 CrossRefGoogle Scholar
  59. 59.
    Liwu, Z.H.U., Shaowen, J.B.L.I., Juanjuan, K.O.N.G.: Fuzzy decision system for ecological distribution of citrus in north-cultivated-marginal area. Chin. J. Appl, Ecol (2003). 502Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Beyzanur Çayır Ervural
    • 1
  • Bilal Ervural
    • 1
  • Cengiz Kahraman
    • 1
    Email author
  1. 1.Department of Industrial EngineeringIstanbul Technical UniversityMacka, IstanbulTurkey

Personalised recommendations