Advertisement

Pyro-Electric Effect and Polymers Self-assembling

  • Sara CoppolaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this section the functionalization of Lithium Niobate substrates and the activation of the pyroelectric effect into periodically poled LN (PPLN) substrates is used to pattern and control the surface wettability. Compared to conventional electro-wetting (EW) experiments, this technique allows one to obtain wettability patterning by an electrode-less configuration. In particular, using the pyro-electric effect activated onto a PPLN crystal it is possible to manipulate liquid and polymeric materials, the fabrication of polymeric microlenses is described and characterized. In this chapter a novel approach is also presented for manipulating liquid crystals by pyroelectric effect, where the strong electric fields generated through a thermal stimulus allow the manipulation of liquids in 2D on a substrate.

Keywords

Lithium Niobate PDMS Layer Microlens Array Lithium Niobate Crystal Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Liu, J.B.-H. Tok, J. Locklin, Z. Bao, Small 2, 1448 (2006)CrossRefGoogle Scholar
  2. 2.
    B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, N.L. Abbott, Science 283, 57 (1999)CrossRefGoogle Scholar
  3. 3.
    F. Mugele, S. Herminghaus, Appl. Phys. Lett. 81, 2303 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Beni, G., A. Tenan. J. Appl. Phys. 52, 6011 (1981)CrossRefGoogle Scholar
  5. 5.
    T.B. Jones, M. Gunji, M. Washizu, M.J. Feldman, J. Appl. Phys. 89, 1441 (2001)CrossRefGoogle Scholar
  6. 6.
    R.B.M. Schasfoort, S. Schlautmann, J. Hendrikse, A. van den Berg, Science 286, 942 (1999)CrossRefGoogle Scholar
  7. 7.
    F. Mugele, J.-C. Baret, J. Phys.: Condens. Matter 17, R705 (2005)Google Scholar
  8. 8.
    J. Zeng, T. Korsmeyer, Lab Chip 4, 265 (2004)CrossRefGoogle Scholar
  9. 9.
    D. Aronov, G. Rosenman, A. Karlov, A. Shashkin, Appl. Phys. Lett. 88, 163902 (2006)CrossRefGoogle Scholar
  10. 10.
    D.B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S.C. Jones, S.R. Marder, J. Lee, W.P. King, Appl. Phy. Lett. 91, 243104 (2007)CrossRefGoogle Scholar
  11. 11.
    R. Hayes, D.J. Feenstra, Nature 425, 383 (2003)CrossRefGoogle Scholar
  12. 12.
    S. Kuiper, B.H.W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004)CrossRefGoogle Scholar
  13. 13.
    F. Laurell, M.G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, J.D. Bierlein, J. Appl. Phys. 71, 4664 (1992)CrossRefGoogle Scholar
  14. 14.
    C.H. Bulmer, W.K. Burns, S.C. Hiser, Appl. Phys. Lett. 48, 1036 (1986)CrossRefGoogle Scholar
  15. 15.
    E.M. Bourim, C.-W. Moon, S.-W. Lee, I.K. Yoo, Phys. B 383, 171 (2006)CrossRefGoogle Scholar
  16. 16.
    G. Rosenman, D. Shur, Y.E. Krasik, A. Dunaevsky, J. Appl. Phys. 88, 6109 (2000)CrossRefGoogle Scholar
  17. 17.
    R.L. Byer, I.E.E.E.J. Select, Topics. Quantum Electron. 6, 911 (2000)CrossRefGoogle Scholar
  18. 18.
    S. Grilli, M. Paturzo, L. Miccio, P. Ferraro, Meas. Science and Tech. 19, 074008 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Yamada, N. Nada, M. Saitoh, K. Watanabe, Appl. Phys. Lett. 62, 435–436 (1993)CrossRefGoogle Scholar
  20. 20.
    L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102–2116 (1995)CrossRefGoogle Scholar
  21. 21.
    B. Rosenblum,P. Bräunlich, J. P. Carrico, Appl. Phys. Lett. 25 (1974)Google Scholar
  22. 22.
    I.A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P.M. Eisenberger, S.M. Gruner, Science 273, 892 (1996)CrossRefGoogle Scholar
  23. 23.
    S. Xu,Y.-J. Lin, S.-T. Wu, Opt. Express 17 (2009)Google Scholar
  24. 24.
    L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, Opt. Express 17 (2009)Google Scholar
  25. 25.
    H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, H. Thienpont, J. Opt. A: Pure Appl. Opt. 4 (2002)Google Scholar
  26. 26.
    M. He, X.-C. Yuan, N.Q. Ngo, J. Bu, S.H. Tao, J. Opt. A: Pure Appl. Opt. 6 (2004)Google Scholar
  27. 27.
    C.Y. Chang, S.Y. Yang, J.L. Sheh, Microsyst. Technol. 12 (2006)Google Scholar
  28. 28.
    J. Shi, Z. Stratton, S-C. S. Lin, H. Huang, T.J. Huang, Microfluid Nanofluid, 9 (2010)Google Scholar
  29. 29.
    J.H. Zhu, J.X. Shi, Y. Wang, P.S. He, Chin. J. Chem. Phys. 19, 443 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Schilling, R. Merz, C. Ossmann, H.P. Herzig, Opt. Eng. 9 (2000)Google Scholar
  31. 31.
    W. Cheong, L. Yuan, V. Koudriachov, W. Yu, Opt. Express 10 (2002)Google Scholar
  32. 32.
    D.W.D. Monteiro, O. Akhzar-Mehr, P.M. Sarro, G. Vdovin, Opt. Express 11 (2003)Google Scholar
  33. 33.
    I.A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, F. Villani, J. App. Polymer Science 122 (2011)Google Scholar
  34. 34.
    J.Y. Kim, N.B. Brauer, V. Fakhfouri, D.L. Boiko, E. Charbon, G. Grutzner, J. Brugger, Opt. Mater. Expr. 1 (2011)Google Scholar
  35. 35.
    P.H. Huang, T.C. Huang, Y.T. Sun, S.Y. Yang, Opt. Express 16, 3041 (2008)CrossRefGoogle Scholar
  36. 36.
    T.H. Lin, H. Yang, C.K. Chao, in DTIP of MEMS & MOEMS Stresa, Italy, 26–8 Apr 2006Google Scholar
  37. 37.
    S. Chang, J. Yoon, Opt. Express 12, 6366 (2004)CrossRefGoogle Scholar
  38. 38.
    C.Y. Chang, S.Y. Yang, L.S. Huang, T.M. Jeng, J. Micromech. Microeng. 16, 999 (2006)CrossRefGoogle Scholar
  39. 39.
    T.K. Shih, J.R. Ho, J.W.J. Cheng, IEEE Photonics Technol. Lett. 16, 2078 (2004)CrossRefGoogle Scholar
  40. 40.
    T.K. Shih, C.F. Chen, J.R. Ho, F.T. Chuang, Microelectron. Eng. 83, 2499 (2006)CrossRefGoogle Scholar
  41. 41.
    S.Y. Lee, H.W. Tung, W.C. Chen, W. Fang, IEEE Photonics Technol. Lett. 18, 2191 (2006)CrossRefGoogle Scholar
  42. 42.
    D. Chandra, S. Yanga, P.C. Lin, Appl. Phys. Lett. 91, 251912 (2007)CrossRefGoogle Scholar
  43. 43.
    S.L. Peterson, A. McDonald, P.L. Gourley, D.Y. Sasaki, J. Biomed. Mater. Res. 72A (2005)Google Scholar
  44. 44.
    S.I. Morefield, E.W. Keefer, K.D. Chapman, G.W. Gross, Biosens. Bioelectron. 15 (2000)Google Scholar
  45. 45.
    H. Andersson, A. van den Berg, Lab on Chip 4 (2004)Google Scholar
  46. 46.
    K. Atsuta, H. Noji, S. Takeuchi, Lab on Chip 4 (2004)Google Scholar
  47. 47.
    C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Science 276 (1997)Google Scholar
  48. 48.
    P. Ferraro, S. Grilli, L. Miccio, V. Vespini, Appl. Phys. Lett. 92 (2008)Google Scholar
  49. 49.
    L. Miccio, M. Paturzo, S. Grilli, V. Vespini, P. Ferraro, Opt. Lett. 34 (2009)Google Scholar
  50. 50.
    G. Gibson, D.M. Carberry, G. Whyte, J. Leach, J. Courtial, J.C. Jackson, D. Robert, M. Miles, M. Padgett, J. Opt. A: Pure Appl. Opt. 10, 044009 (2008)CrossRefGoogle Scholar
  51. 51.
    T.H. Kim, Y.W. Lee, I.W. Lee, S.C. Choi, Appl. Opt. 39, 2054 (2000)CrossRefGoogle Scholar
  52. 52.
    A. Fratalocchi, R. Asquini, G. Assanto, Opt. Express 13, 32 (2005)CrossRefGoogle Scholar
  53. 53.
    J.A. Davis, G.H. Evans, K. Crabtree, I. Moreno, Appl. Opt. 43, 6235 (2004)CrossRefGoogle Scholar
  54. 54.
    Y.J. Kim, M.R. Luo, W. Choe, H.S. Kim, S.O. Park, Y. Baek, P. Rhodes, S. Lee, C.Y. Kim, J. Opt. Soc. Am. A: 25, 2215 (2008)CrossRefGoogle Scholar
  55. 55.
    H.T. Dai, Y.J. Liu, X.W. Sun, D. Luo, Opt. Express 17, 4317 (2009)CrossRefGoogle Scholar
  56. 56.
    H. Ren, S.-T. Wu, Opt. Express 14, 11292 (2006)CrossRefGoogle Scholar
  57. 57.
    Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, M. Koch, Opt. Commun. 281, 4623 (2008)CrossRefGoogle Scholar
  58. 58.
    Y. Yuan, J. He, J. Liu, J. Yao, J. Phys.: Conf. Series 276, 012228 (2011)Google Scholar
  59. 59.
    I. Viola, M. Mazzeo, A. Passabì, S. D’Amone, R. Cingolani, G. Gigli, Adv. Mater. 17, 2935 (2005)CrossRefGoogle Scholar
  60. 60.
    S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, S. Schlagowski, Science 282, 916 (1998)CrossRefGoogle Scholar
  61. 61.
    M. Szaleniec, R. Tokarz-Sobieraj, W. Witko, J. Mol. Model. 15, 935 (2009)CrossRefGoogle Scholar
  62. 62.
    R.B. Bogoslovov, C.M. Roland, J. Czub, S. Urban, J. Phys. Chem. B 112, 16008 (2008)CrossRefGoogle Scholar
  63. 63.
    P. Mokrý, M. Marvan, J. Fousek, J. Appl. Phys. 107, 094104 (2010)CrossRefGoogle Scholar
  64. 64.
    S. Liu, J.B.-H. Tok, J. Locklin, Z. Bao, Small 2, 1448 (2006)CrossRefGoogle Scholar
  65. 65.
    T. Kimura, M. Yamato, A. Nara, Langmuir 20, 572 (2004)CrossRefGoogle Scholar
  66. 66.
    R. Cicoria, Y. Sun, Nanotech. 19, 485303 (2008)CrossRefGoogle Scholar
  67. 67.
    K.-L. Cheng, Y.-J. Sheng, S. Jiang, H.-K. Tsao, J. Chem. Phys. 128, 101101 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Applied Sciences and Intelligent Systems, ISASI-CNRPozzuoliItaly

Personalised recommendations