Skip to main content

Fitness and Novelty in Evolutionary Art

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9596)

Abstract

In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.

Keywords

  • Novelty search
  • Evolutionary art
  • Multi-objective optimisation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-31008-4_16
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-31008-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Notes

  1. 1.

    In the context of the present paper, novelty means phenotypic diversity.

References

  1. Boden, M.A.: The Creative Mind: Myths and Mechanisms. Psychology Press, New York (2004)

    Google Scholar 

  2. Kowaliw, T., Dorin, A., McCormack, J.: Promoting creative design in interactive evolutionary computation. IEEE Trans. Evol. Comput. 16(4), 523 (2012)

    CrossRef  Google Scholar 

  3. Sims, K.: Artificial evolution for computer graphics. ACM Comput. Graph. 25, 319–328 (1991)

    CrossRef  Google Scholar 

  4. Machado, P., Cardoso, A.: All the truth about NEvAr. Appl. Intel. 16(2), 101–119 (2002). Special Issue on Creative Systems

    CrossRef  MATH  Google Scholar 

  5. McCormack, J.: Facing the future: evolutionary possibilities for human-machine creativity. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Natural Computing Series, pp. 417–451. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  6. Correia, J., Machado, P., Romero, J., Carballal, A.: Evolving figurative images using expression-based evolutionary art. In: Proceedings of the Fourth International Conference on Computational Creativity (ICCC), pp. 24–31 (2013)

    Google Scholar 

  7. Machado, P., Correia, J., Romero, J.: Expression-based evolution of faces. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 187–198. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Machado, P., Correia, J., Romero, J.: Improving face detection. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 73–84. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  9. Machado, P., Vinhas, A., Correia, J.A., Ekárt, A.: Evolving ambiguous images. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 2473–2479. AAAI Press (2015)

    Google Scholar 

  10. Horigan, J., Lentczner, M.: Context Free Design Grammar version 2 syntax (2015). http://www.contextfreeart.org/mediawiki/index.php/Version_2_Syntax

  11. Machado, P., Correia, J., Assunção, F.: Graph-based evolutionary art. In: Gandomi, A., Alavi, A.H., Ryan, C. (eds.) Handbook of Genetic Programming Applications. Springer, Heidelberg (2015)

    Google Scholar 

  12. Krcah, P., Toropila, D.: Combination of novelty search and fitness-based search applied to robot body-brain co-evolution. In: Czech-Japan Seminar on Data Analysis and Decision Making in Service Science, pp. 1–6 (2010)

    Google Scholar 

  13. Methenitis, G., Hennes, D., Izzo, D., Visser, A.: Novelty search for soft robotic space exploration. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 193–200. ACM, New York (2015)

    Google Scholar 

  14. Mouret, J.-B.: Novelty-based multiobjectivization. In: Doncieux, S., Bredèche, N., Mouret, J.-B. (eds.) New Horizons in Evolutionary Robotics. SCI, vol. 341, pp. 139–154. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  15. Liapis, A., Yannakakis, G.N., Togelius, J.: Sentient sketchbook: computer-aided game level authoring. In: FDG, pp. 213–220 (2013)

    Google Scholar 

  16. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    CrossRef  Google Scholar 

  17. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: Proceedings of the Eleventh International Conference on Artificial Life (ALIFE XI). MIT Press, Cambridge (2008)

    Google Scholar 

  18. Saunders, R., Gero, J.S.: The digital clockwork muse: a computational model of aesthetic evolution. Proc. AISB 1, 12–21 (2001)

    Google Scholar 

  19. Silberschatz, A., Tuzhilin, A.: What makes patterns interesting in knowledge discovery systems. IEEE Trans. Knowl. Data Eng. 8(6), 970–974 (1996)

    CrossRef  Google Scholar 

  20. Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, New York (1989)

    CrossRef  MATH  Google Scholar 

  21. Lehman, J., Stanley, K.O.: Revising the evolutionary computation abstraction: minimal criteria novelty search. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 103–110. ACM (2010)

    Google Scholar 

  22. Liapis, A., Yannakakis, G., Togelius, J.: Enhancements to constrained novelty search: two-population novelty search for generating game content. In: Proceedings of Genetic and Evolutionary Computation Conference (2013)

    Google Scholar 

  23. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-population (FI-2Pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Eur. J. Oper. Res. 190(2), 310–327 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  24. Cuccu, G., Gomez, F.: When novelty is not enough. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 234–243. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  25. Vinhas, A.: Novelty and figurative expression-based evolutionary art. Master’s thesis, Department of Informatic Engineering, Faculty of Sciences and Technology, University of Coimbra, July 2015

    Google Scholar 

  26. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    CrossRef  Google Scholar 

  27. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 511 (2001)

    Google Scholar 

  28. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)

    CrossRef  Google Scholar 

  29. Horigan, J., Lentczner, M.: Context Free (2014). http://www.contextfreeart.org/

  30. Machado, P., Nunes, H.: A step towards the evolution of visual languages. In: First International Conference on Computational Creativity, Lisbon, Portugal (2010)

    Google Scholar 

  31. Machado, P., Nunes, H., Romero, J.: Graph-based evolution of visual languages. In: Di Chio, C., et al. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 271–280. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  32. Assunção, F.: Grammar based evolutionary design. Master’s thesis, Department of Informatic Engineering, Faculty of Sciences and Technology, University of Coimbra, July 2015

    Google Scholar 

  33. Ross, B.J., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp.1087–1094. IEEE (2006)

    Google Scholar 

Download references

Acknowledgments

The project ConCreTe acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET grant number 611733. This research is also partially funded by: Fundação para a Ciência e Tecnologia (FCT), Portugal, under the grant SFRH/BD/90968/2012. The authors also acknowledge the feedback provided by the blind reviewers of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Vinhas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Vinhas, A., Assunção, F., Correia, J., Ekárt, A., Machado, P. (2016). Fitness and Novelty in Evolutionary Art. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2016. Lecture Notes in Computer Science(), vol 9596. Springer, Cham. https://doi.org/10.1007/978-3-319-31008-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31008-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31007-7

  • Online ISBN: 978-3-319-31008-4

  • eBook Packages: Computer ScienceComputer Science (R0)