Skip to main content

Insufficiency of the Brauer–Manin Obstruction for Rational Points on Enriques Surfaces

  • Conference paper
  • First Online:
Directions in Number Theory

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 3))

Abstract

In Várilly-Alvarado and Viray (Adv. Math. 226(6):4884–4901, 2011), the authors constructed an Enriques surface X over \(\mathbb{Q}\) with an étale-Brauer obstruction to the Hasse principle and no algebraic Brauer–Manin obstruction. In this paper, we show that the nontrivial Brauer class of \(X_{\overline{\mathbb{Q}}}\) does not descend to \(\mathbb{Q}\). Together with the results of Várilly-Alvarado and Viray (Adv. Math. 226(6):4884–4901, 2011), this proves that the Brauer–Manin obstruction is insufficient to explain all failures of the Hasse principle on Enriques surfaces.

The methods of this paper build on the ideas in Creutz and Viray (Math. Ann. 362(3–4):1169–1200, 2015; Manuscripta Math. 147(1–2): 139–167, 2015) and Ingalls et al., (Unramified Brauer classes on cyclic covers of the projective plane, Preprint): we study geometrically unramified Brauer classes on X via pullback of ramified Brauer classes on a rational surface. Notably, we develop techniques which work over fields which are not necessarily separably closed, in particular, over number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A smooth projective variety X satisfies weak approximation if X(k) is dense in \(X(\mathbb{A}_{k})\) in the adelic topology.

References

  1. Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer, Berlin (1984)

    Google Scholar 

  2. Beauville, A.: Complex algebraic surfaces. London Mathematical Society Student Texts, vol. 34, 2nd ed. Cambridge University Press, Cambridge, 1996; Translated from the 1978 French original by R. Barlow, with assistance from N.I. Shepherd-Barron and M. Reid

    Google Scholar 

  3. Beauville, A.: On the Brauer group of Enriques surfaces. Math. Res. Lett. 16 (6), 927–934

    Google Scholar 

  4. Creutz, B., Viray, B.: On Brauer groups of double covers of ruled surfaces. Math. Ann. 362 (3–4), 1169–1200 (2015). doi:10.1007/s00208-014-1153-0. MR3368096

    Article  MathSciNet  MATH  Google Scholar 

  5. Creutz, B., Viray, B.: Two torsion in the Brauer group of a hyperelliptic curve. Manuscripta Math. 147 (1–2), 139–167 (2015). doi:10.1007/s00229-014-0721-7. MR3336942

    Article  MathSciNet  MATH  Google Scholar 

  6. Gille, P., Szamuely, T.: Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  7. Grothendieck, A.: Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.]. Secrétariat mathématique, Paris (1962) (French). MR0146040 (26 #3566)

    Google Scholar 

  8. Grothendieck, A.: Le groupe de Brauer. III. Exemples et compléments. Dix Exposés sur la Cohomologie des Schémas, pp. 88–188. North-Holland/Masson, Amsterdam/Paris (1968) (French)

    Google Scholar 

  9. Harari, D., Skorobogatov, A.: Non-abelian descent and the arithmetic of Enriques surfaces. Int. Math. Res. Not. 52, 3203–3228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ingalls, C., Obus, A., Ozman, E., Viray, B.: Unramified Brauer classes on cyclic covers of the projective plane. Preprint. arXiv:1310.8005

    Google Scholar 

  11. Liu, Q.: Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford (2002); Translated from the French by Reinie Erné; Oxford Science Publications.

    Google Scholar 

  12. Manin, Y.I., Le groupe de Brauer-Grothendieck en géométrie diophantienne. Actes du Congrés International des Mathématiciens (Nice, 1970), Tome 1, pp. 401–411 (1971)

    MathSciNet  Google Scholar 

  13. Milne, J.S.: Étale cohomology. Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, NJ (1980). MR559531 (81j:14002)

    Google Scholar 

  14. Skorobogatov, A.N.: Beyond the Manin obstruction. Invent. Math. 135 (2), 399–424 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Skorobogatov, A.N.: Torsors and rational points. Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge (2001). MR1845760 (2002d:14032)

    Google Scholar 

  16. Várilly-Alvarado, A., Viray, B.: Failure of the Hasse principle for Enriques surfaces. Adv. Math. 226 (2011)(6), 4884–4901. doi:10.1016/j.aim.2010.12.020

    Google Scholar 

Download references

Acknowledgements

This project began at the Women in Numbers 3 conference at the Banff International Research Station. We thank BIRS for providing excellent working conditions and the organizers of WIN3, Ling Long, Rachel Pries, and Katherine Stange, for their support. We also thank Anthony Várilly-Alvarado for allowing us to reproduce some of the tables from [16] in this paper for the convenience of the reader. F.B. supported by EPSRC scholarship EP/L505031/1. M.M. partially supported by NSF grant DMS-1102858. J.P. partially supported by NSERC PDF grant. B.V. partially supported by NSF grant DMS-1002933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Balestrieri .

Editor information

Editors and Affiliations

Appendix: Fields, Defining Equations, and Galois Actions

Appendix: Fields, Defining Equations, and Galois Actions

The splitting field K of the genus 1 curves \(C_{i},\widetilde{C}_{i},\widetilde{D}_{i},F_{i},G_{i}\) is generated by

$$\displaystyle\begin{array}{rcl} & & i,\sqrt{2},\sqrt{5},\sqrt{a},\sqrt{c},\eta _{0}:= \sqrt{c^{2 } - 100ab},\gamma _{0}:= \sqrt{-c^{2 } - 5bc - 10ac - 25ab}, {}\\ & & \root{4}\of{ab},\sqrt{-2 + 2\sqrt{2}},\sqrt{-c - 10\sqrt{ab}}, {}\\ & & \theta _{0}:= \sqrt{4a^{2 } + b^{2}},\;\xi _{0}:= \sqrt{a + b + c/5},\;\xi _{0}':= \sqrt{a + b/4 + c/10}, {}\\ & & \theta _{1}^{+}:= \sqrt{20a^{2 } - 10ab - 2bc + (10a + 2c)\theta _{ 0}},\;\theta _{2}^{+}:= \sqrt{-5a - 5/2b - 5/2\theta _{ 0}}, {}\\ & & \xi _{1}^{+}:= \sqrt{20a + 10b + 3c + 20\xi _{ 0}\xi _{0}'},\;\xi _{2}^{+}:= \sqrt{4a + 2b + 2/5c + 4\xi _{ 0}\xi _{0}'}. {}\\ \end{array}$$

Define

$$\displaystyle{ \begin{array}{rclcrcl} \eta _{1}^{+} &:=& \frac{c-\eta _{0}+10\sqrt{ab}} {10\sqrt{a}\sqrt{-c-10\sqrt{ab}}} &&\gamma _{1}^{+} &:=&(\theta _{1}^{+})^{-1}\left (10a^{2} - 5ab - bc + 2a\gamma _{0} + (c + 5a)\theta _{0}\right ) \\ \eta _{1}^{-}&:=& \frac{c+\eta _{0}+10\sqrt{ab}} {10\sqrt{a}\sqrt{-c-10\sqrt{ab}}} &&\gamma _{1}^{-}&:=&(\theta _{1}^{+})^{-1}\left (10a^{2} - 5ab - bc - 2a\gamma _{0} + (c + 5a)\theta _{0}\right ). \\ \end{array} }$$

The following subfields of K are of particular interest:

$$\displaystyle{ \mathbb{Q}\; \subset \; K_{0}: =\mathbb{Q}\left (i,\sqrt{2},\sqrt{5},\sqrt{-2+ 2\sqrt{2}}\right )\; \subset \; K_{1}: =K_{0}\left (\theta _{0},\sqrt{ab},\eta _{1}^{+},\gamma _{ 1}^{+}\right )\; \subset \; K. }$$

The field extensions \(K/\mathbb{Q}\) and \(K_{1}/\mathbb{Q}\) are Galois, as the following relations show:

$$\displaystyle\begin{array}{rcl} \sqrt{-2 - 2\sqrt{2}}& =& \frac{2i} {\sqrt{-2 + 2\sqrt{2}}}, {}\\ \sqrt{ -c + 10\sqrt{ab}}& =& \frac{\eta _{0}} {\sqrt{-c - 10\sqrt{ab}}}, {}\\ \theta _{1}^{-}&:=& \sqrt{20a^{2 } - 10ab - 2bc + (10a + 2c)\theta _{ 0}} = \frac{4a\gamma _{0}} {\theta _{1}^{+}}, {}\\ \theta _{2}^{-}&:=& \sqrt{-5a - 5/2b + 5/2\theta _{ 0}} = \frac{5\sqrt{ab}} {\theta _{2}^{+}}, {}\\ \xi _{1}^{-}&:=& \sqrt{20a + 10b + 3c - 20\xi _{ 0}\xi _{0}'} = \frac{\eta _{0}} {\xi _{1}^{+}}, {}\\ \xi _{2}^{-}&:=& \sqrt{4a + 2b + 2/5c - 4\xi _{ 0}\xi _{0}'} = \frac{2\gamma _{0}} {5\xi _{2}^{+}}, {}\\ (\gamma _{1}^{+})^{2}& =& 10a^{2} - 5ab - bc + 2a\gamma _{ 0},\quad (\eta _{1}^{+})^{2} = \frac{-c +\eta _{0}} {50a}, {}\\ (\gamma _{1}^{-})^{2}& =& 10a^{2} - 5ab - bc - 2a\gamma _{ 0},\quad (\eta _{1}^{-})^{2} = \frac{-c -\eta _{0}} {50a}, {}\\ \gamma _{1}^{+}\gamma _{ 1}^{-}& =& (5a + c)\theta _{ 0},\quad \eta _{1}^{+}\eta _{ 1}^{-} = \frac{-1} {5a} \sqrt{ab}. {}\\ \end{array}$$

Tables A.1 and A.4 show that these fields have the properties claimed in Sect. 3.

Remark 1.

Tables A.1 and A.4 list defining equations of a subvariety of the Y a . The image of this subvariety gives the corresponding object in X a (Table A.5).

Table A.4 Defining equations of a curve representing a divisor class
Table A.5 The Galois action on the fibers of the genus 1 fibrations and the Weierstrass points

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Balestrieri, F., Berg, J., Manes, M., Park, J., Viray, B. (2016). Insufficiency of the Brauer–Manin Obstruction for Rational Points on Enriques Surfaces. In: Eischen, E., Long, L., Pries, R., Stange, K. (eds) Directions in Number Theory. Association for Women in Mathematics Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-30976-7_1

Download citation

Publish with us

Policies and ethics