Advertisement

The Overconvergent Site, Descent, and Cohomology with Compact Support

  • Christopher LazdaEmail author
  • Ambrus Pál
Chapter
  • 717 Downloads
Part of the Algebra and Applications book series (AA, volume 21)

Abstract

In this chapter we introduce a version of Le Stum’s overconvergent site for \({\mathscr {E}}_{K}^{\dagger }\)-valued cohomology, and show that \(H^i_\mathrm {rig}(X/{\mathscr {E}}_{K}^{\dagger },\mathscr {E})\) can be computed as the cohomology of this site. This then allows us to prove that cohomological descent holds for both fppf and proper hypercovers, again by adapting the proofs in the classical case. By using de Jong’s theorem on alteration, we may then deduce finite dimensionality of \(H^i_\mathrm {rig}(X/{\mathscr {E}}_{K}^{\dagger },\mathscr {E})\) in general, extending the case of smooth schemes in the previous chapter. We also introduce a version of \({\mathscr {E}}_{K}^{\dagger }\)-valued rigid cohomology with compact support, although can only prove the required finiteness results under strong assumptions on the coefficients. Under these assumption, we also deduce a version of Poincaré duality from the classical case over \(\mathscr {E}_K\).

References

  1. 1.
    Authors, T.S.P.: Stacks Project. http://stacks.math.columbia.edu (2015)
  2. 2.
    Berthelot, P.: Géométrie rigide et cohomologie des variétés algébriques de caractéristique \(p\). Mem. Soc. Math. France 23, 7–32 (1986)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chiarellotto, B., Tsuzuki, N.: Cohomological descent of rigid cohomology for étale coverings. Rend. Sem. Mat. Univ. Padova 109, 63–215 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Conrad, B.: Cohomological Descent. http://math.stanford.edu/conrad/papers/hypercover.pdf
  5. 5.
    Fujiwara, K., Kato, F.: Foundations of rigid geometry I. Preprint (2013). arXiv:math/1308.4734v1. To appear in EMS Monographs in Mathematics
  6. 6.
    Grothendieck, A., Verdier, J.L.: Topos, Expose IV. In: SGA IV, Tome 1: Théorie des Topos et Cohomologie Étale des Schémas, Théorie des Topos, Lecture Notes in Mathematics, vol. 269. Springer-Verlag (1972)Google Scholar
  7. 7.
    de Jong, A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Publ. Math. I.H.E.S. 82, 5–96 (1995)Google Scholar
  8. 8.
    Le Stum, B.: Rigid Cohomology, Cambridge Tracts in Mathematics, vol. 172. Cambridge University Press (2007)Google Scholar
  9. 9.
    Le Stum, B.: The overconvergent site. Mémoires de la SMF 127 (2011)Google Scholar
  10. 10.
    Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de “platification” d’un module. Invent. Math. 13, 1–89 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Saint-Donat, B.: Techniques de descente cohomologique, Expose Vbis. In: SGA IV, Tome 2: Théorie des Topos et Cohomologie Étale des Schémas, Théorie des Topos, Lecture Notes in Mathematics, vol. 269. Springer-Verlag (1972)Google Scholar
  12. 12.
    Zureick-Brown, D.: Cohomological descent on the overconvergent site. Res. Math. Sci. 1(8) (2014)Google Scholar
  13. 13.
    Zureick-Brown, D.: Cohomology with closed support on the overconveregnt site. Preprint (2014). arXiv:math/1408.1970

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Università Degli Studi di PadovaPaduaItaly
  2. 2.Imperial College LondonLondonUK

Personalised recommendations