Donkey Electron, Bare Electron, Electroweak Frog, God Particle, Colored Quarks and Gluons, Asymptotic Freedom, Partons, QCD Jets, Confined Quarks, Black Hole Entropy, Sparticles, Strings, Branes, Quanta of Geometry, CPT and Spin & Statistics
  • Edouard B. Manoukian
Part of the Graduate Texts in Physics book series (GTP)


The major theme of quantum field theory is the development of a unified theory that may be used to describe nature from microscopic to cosmological distances. Quantum field theory was born 90 years ago, when quantum theory met relativity, and has captured the hearts of the brightest theoretical physicists in the world. It is still going strong. It has gone through various stages, met various obstacles on the way, and has been struggling to provide us with a coherent description of nature in spite of the “patchwork” of seemingly different approaches that have appeared during the last 40 years or so, but still all, with the common goal of unification.


Black Hole Gauge Theory String Theory Higgs Boson Quantum Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aad, G. et al. (2012). Observation of a new particle in the search for the Standard Model Higgs Boson with the ATLAS detector at the LHC. Physics Letters, B716, 1–29.ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aharoni, O. et al. (2008). N = 6 superconformal Chern-Simons matter theories, M2-branes and their gravity duals. JHEP, 0810, 091.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Amati, D., Ciafaloni, M., & Veneziano, G. (1987). Superstring collisions at planckian energies. Physics Letters, B197, 81–88.ADSCrossRefGoogle Scholar
  4. 4.
    Amati, D., Ciafaloni, M., & Veneziano, G. (1988). Classical and Quantum effects from Planckian energy superstring collisions. International Journal of Modern Physics, 3, 1615–1661.ADSCrossRefGoogle Scholar
  5. 5.
    Anderson, C. D. (1932). The apparent existence of easily deflectable positives. Science, 76, 238–239.ADSCrossRefGoogle Scholar
  6. 6.
    Anderson, C. D. (1933). The positive electron. Physical Review, 43, 491–494.ADSCrossRefGoogle Scholar
  7. 7.
    Anderson, P. W. (1963). Plasmons, gauge invariance, and mass. Physical Review, 130, 439–442.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ansari, M. H. (2008). Generic degeneracy and entropy in loop quantum gravity. Nuclear Physics, B795, 635–644.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Anselmi, D. (2003). Absence of higher derivatives in the renormalization of propagators in quantum field theory with infinitely many couplings. Class. Quantum Grav., 20, 2344–2378.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Arnowitt, R. S., Deser, S., & Misner, W. (2008). The dynamics of general relativity. General Relativity and Gravitation, 40, 1997–2027. Reprinted from Gravitation: An Introduction to current research (Chap.7), Edited by L. Witten. John Wiley & Sons Inc., New York/London, 1962.ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Aschenbrenner, M. (1996). A decoupling theorem for the BPHZL-scheme. Annals of Physics, 250, 320–351.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ashtekar, A., & Lewandoski, J. (1997). Quantum theory of gravity I: Area operators. Classical Quantum Gravity, 14, A55–A81.ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Becchi, C., Rouet, A., & Stora, R. (1976). Renormalization of gauge theories. Annals of Physics, 98, 287–321.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bekenstein, J. D. (1973). Black holes and entropy. Physical Review, D7, 2333–2346.ADSMathSciNetGoogle Scholar
  15. 15.
    Benvenuti, A. et al. (1974). Observation of Muonless neutrino-induced inelastic interactions. Physical Review Letters, 32, 800–803.ADSCrossRefGoogle Scholar
  16. 16.
    Beringer, J. et al. (2012). Particle data group. Physical Review D, 86, 010001.ADSCrossRefGoogle Scholar
  17. 17.
    Bethe, H. (1947). The Electromagnetic shift of energy levels. Physical Review, 72, 339–341.ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Bethe, H., & Fermi, E. (1932). Über die Wechselwirkung von Zwei Elektronen. Zeitschrift fur Physik, 77, 296–306.ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Bjerrum-Bohr, N. E. J., Donoghue, J. F., & Holstein, B. R. (2003a). Quantum gravitational corrections to the non-relativistic scattering potential of two mesons. Physical Review, D 67, 084033. Erratum: ibid., D71, 069903 (2005).Google Scholar
  20. 20.
    Bjerrum-Bohr, N. E. J., Donoghue, J. F., & Holstein, B. R. (2003b). Quantum corrections to the schwarzchild and kerr metrics. Physical Review, 68, 084005–084021.MathSciNetGoogle Scholar
  21. 21.
    Bjorken, J. D., & Pachos, E. A. (1969). Inelastic electron-proton and y-proton scattering and the structure of the nucleon. Physical Review, 185, 1975–1982.ADSCrossRefGoogle Scholar
  22. 22.
    Bloch, F., & Nordsieck, A. (1937). Notes on the radiation field of the electron. Physical Review, 52, 54–59.ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Bludman, S. (1958). On the universal fermi interaction. Nuovo Cimento, 9, 433–445.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bogoliubov, N. N., & Parasiuk, O. S. (1957). On the multiplication of propagators in quantum field theory. Acta Physics Mathematics, 97, 227–266. Original German Title: Über die Multiplikation der Kausalfunctionen in der Quantentheorie der Felder.Google Scholar
  25. 25.
    Bogoliubov, N. N., & Shirkov, D. V. (1959). Introduction to the theory of quantized fields. Interscience, New York.Google Scholar
  26. 26.
    Born, M., Heisenberg, W., & Jordan, P. (1926). Zur Quantenmechanik III. Zeitschrift fur Physik, 35, 557–615. Reprinted in Sources of quantum mechanics, (ed. B. L. vander Waerden), Dover Publications, New York (1968).Google Scholar
  27. 27.
    Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74, 825–874.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Callan, C. G. (1970). Broken scale invariance in scalar field theory. Physical Review, D2, 1541–1547.ADSGoogle Scholar
  29. 29.
    Callan, C. G. (1972). Broken scale invariance and asymptotic behavior. Physical Review, D5, 3202–3210.ADSGoogle Scholar
  30. 30.
    Chamberlain, O., Segrè, E., Wiegand, C. and Ypsilantis, T. (1955). Observation of antiprotons. Physical Review, 100, 947–950.ADSCrossRefGoogle Scholar
  31. 31.
    Chatrchyan, S. et al. (2012). Observation of a New Boson at Mass 125 GeV with the CMS experiment at LHC. Physics Letters, B716, 30–61.ADSCrossRefGoogle Scholar
  32. 32.
    Christenson, J. H. et al. (1964). Evidence for the 2π decay of the K2 0 meson. Physical Review Letters, 13, 138–140.ADSCrossRefGoogle Scholar
  33. 33.
    Coleman, S., & Mandula, J. (1967). All possible symmetries of the S matrix. Physical Review, 150, 1251–1256.ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Connes, A., & Kreimer, D. (1998). Hopf algebras, renormalization and noncommutative geometry. Communications in Mathematical Physics, 119, 203–242.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Connes, A., & Kreimer, D. (2000). Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure and the main theorem. Communications in Mathematical Physics, 210, 249–273.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    CPLEAR/Collaboration (2000). T violation and CPT tests at CPLEAR, symmetries in subatomic physics. In: 3rd International Symposium. AIP Conference Proceedings (Vol. 539, pp. 187–196), Adelaide (Australia).Google Scholar
  37. 37.
    Cremmer, E., Julia, B., & Scherk, J. (1978). Supergravity theory in eleven-dimensions. Physics Letters, B76, 409–412.ADSCrossRefGoogle Scholar
  38. 38.
    Cronin, J. W. (1981). CP symmetry violation: The search of its origin. Reviews of Modern Physics, 53, 373–383.ADSCrossRefGoogle Scholar
  39. 39.
    Cronin, J. W., & Fitch, V. L. (1964). Evidence for the 2π decay of the K 2 0 meson. Physical Review Letters, 13, 138–140.ADSGoogle Scholar
  40. 40.
    Deser, S. (2000). Infinities in quantum gravities. Annalen der Physik, 9, 299–306.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Deser, S., Kay, J. H., & Stelle, K. S. (1977). Renormalizability properties of supergravity. Physical Review Letters, 38, 527–530.ADSCrossRefGoogle Scholar
  42. 42.
    Deser, S., & Zumino, B. (1976). Consistent supergravity. Physics Letters, 62B, 335–337.ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    DeWitt, B. (1964). Theory for radiative corrections for non-Abelian gauge fields. Physical Review Letters, 12, 742–746.ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    DeWitt, B. (1967a). Quantum theory of gravity. II. The manifestly covariant theory. Physical Review, 162, 1195–1239.ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Dimopoulos, S., & Georgi, H. (1981). Softly broken supersymmetry and SU(5). Nuclear Physics, B193, 150–162.ADSCrossRefGoogle Scholar
  46. 46.
    Dirac, P. A. M. (1927). The quantum theory of the emssion and absorption of radiation. Proceedings of the Royal Society of London, A114, 243–265.Google Scholar
  47. 47.
    Dirac, P. A. M. (1928a). The quantum theory of the electron, I. Proceedings of the Royal Society of London, A114, 610–624.Google Scholar
  48. 48.
    Dirac, P. A. M. (1928b). The quantum theory of the electron, II. Proceedings of the Royal Society of London, A117, 610–624.Google Scholar
  49. 49.
    Dirac, P. A. M. (1928c). Über die Quantentheorie des Elektrons. Physikalishce Zeitschrift, 29, 561–563.Google Scholar
  50. 50.
    Dirac, P. A. M. (1930a). A theory of electrons and protons. Proceedings of the Royal Society of London, A126, 360–365.Google Scholar
  51. 51.
    Dirac, P. A. M. (1930b). On the annihilation of electrons and protons. Proc. Cambridge Phil. Soc., 26, 361–375.ADSzbMATHCrossRefGoogle Scholar
  52. 52.
    Dirac, P. A. M. (1931). Quantized singularities in the electromagnetic field. Proceedings of the Royal Society of London, A133, 60–72.Google Scholar
  53. 53.
    Dirac, P. A. M. (1970). Can equations of motion be used in high-energy physics? Physics Today, 23, 29. April, issue (4).Google Scholar
  54. 54.
    Di Vecchia, P. (2008). The birth of string theory. In M. Gasperini & J. Maharana (Eds.), String theory and fundamental interactions: Gabriele Veneziano and theoretical physics: Historical and contemporary perspectives. (Lecture notes in physics, vol. 737, pp. 59–118). Berlin/New York: Springer.Google Scholar
  55. 55.
    Donoghue, J. F. (1994a). Leading correction to the newtonian potential. Physical Review Letters, 72, 2996.ADSCrossRefGoogle Scholar
  56. 56.
    Donoghue, J. F. (1994b). General relativity as an effective field theory, the leading corrections. Physical Review, D50, 3874–3888. (gr-qg/9405057).Google Scholar
  57. 57.
    Donoghue, J. F. (1997). In Fernando, C., & Herrero, M.-J. (Eds.), Advanced school on effective theories. World Scientific, Spain. UMHEP - 424, gr-qc/9512024.Google Scholar
  58. 58.
    Duff, M. J. (1996). M-theory (The theory formerly known as superstrings). International Journal of Modern Physics, A11, 5623–5642, hep–th/9608117.Google Scholar
  59. 59.
    Dyson, F. J. (1949a). The radiation theories of Tomonaga, Schwinger and Feynman. Physical Review, 75, 486–502. Reprinted in Schwinger (1958a).Google Scholar
  60. 60.
    Dyson, F. J. (1949b). The S-Matrix in quantum electrodynamics. Physical Review, 75, 1736–1755. Reprinted in Schwinger (1958a).Google Scholar
  61. 61.
    Dyson, F. J. (1967). Ground-state energy of a finite system of charged particles. Journal of Mathematics and Physics, 8(8), 1538–1545.MathSciNetCrossRefGoogle Scholar
  62. 62.
    Ehrenfest, P. (1959). Ansprache zur Verleihung der Lorentzmedaille an Professor Wolfgang Pauli am 31 Oktober 1931. (Address on award of Lorentz medal to Professor Wolfgang Pauli on 31 October 1931). In M. J. Klein (Ed.), Paul Ehrenfest: Collected scientific papers (p. 617). Amsterdam: North-Holland. [The address appeared originally in P. Ehrenfest (1931). Versl. Akad. Amsterdam, 40, 121–126.].Google Scholar
  63. 63.
    Englert, F., & Brout, R. (1964). Broken symmetry and the mass of gauge vector bosons. Physical Review Letters, 13, 321–323.ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Englert, F., Brout, R., & Thiry, M. F. (1966). Vector mesons in presence of broken symmetry. Nuovo Cimento, A43, 244–257.ADSCrossRefGoogle Scholar
  65. 65.
    Epstein, H., & Glaser, V. (1973). The role of locality in perturbation theory. Annales de l’Institute Henri Poincaré, A19, 211–295.MathSciNetzbMATHGoogle Scholar
  66. 66.
    Faddeev, L. D., & Popov, V. N. (1967). Feynman diagrams for the Yang-Mills field. Physics Letters, B25, 29–30.ADSCrossRefGoogle Scholar
  67. 67.
    Fayet, P. (1977). Spontaneously broken supersymmetric theories of weak, electromagnetic, and strong interactions. Physics Letters, 69B, 489–494.ADSCrossRefGoogle Scholar
  68. 68.
    Fermi, E. (1932). Quantum theory of radiation. Reviews of Modern Physics, 4, 87–132.ADSzbMATHCrossRefGoogle Scholar
  69. 69.
    Fermi, E. (1934a). Tentativo di una teoria dei raggi β. Nuovo Cimento, 11, 1–19.zbMATHCrossRefGoogle Scholar
  70. 70.
    Fermi, E. (1934b). Versuch einer Theorie der β - Strahlen. Zeitschrift fur Physik, 88, 161–171.ADSzbMATHCrossRefGoogle Scholar
  71. 71.
    Ferrara, S. (Ed.). (1987). Supersymmetry (Vol. 1 & 2). New York: Elsevier.Google Scholar
  72. 72.
    Feynman, R. P. (1963). Quantum theory of gravitation. Acta Phys. Polon., 24, 697–722.MathSciNetGoogle Scholar
  73. 73.
    Feynman, R. P. (1969a). The behavior of hadron collisions at extreme energies. In Proceedings of the 3rd topical conference on high energy collisions, Stony Brook. New York: Gordon & Breach.Google Scholar
  74. 74.
    Feynman, R. P. (1969b). Very high-energy collisions of hadrons. Physical Review Letters, 23, 1415–1417.ADSCrossRefGoogle Scholar
  75. 75.
    Feynman, R. P. (1972). The development of the space-time view of quantum electrodynamics. In Nobel Lectures, Physics 1963–1970, 11 Dec 1965. Amsterdam: Elsevier.Google Scholar
  76. 76.
    Feynman, R. P. (1982). The theory of fundamental processes, 6th printing. The Menlo Park: Benjamin/Cummings.Google Scholar
  77. 77.
    Feynman, R. P., & Gell-Mann, M. (1958). Theory of fermi interaction. Physical Review, 109, 193–198.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Feynman, R. P., & Hibbs, A. R. (1965). Quantum mechanics and path integrals. New York: McGraw-Hill.zbMATHGoogle Scholar
  79. 79.
    Figueroa, H., & Gracia-Bondia, J. M. (2001). On the antipode of Kreimer’s Hopf algebra. Modern Physics Letters, A16, 1427–1434. hep–th/9912170v2.Google Scholar
  80. 80.
    Figueroa, H., & Gracia-Bondia, J. M. (2004). The uses of Connes and Kreimer’s algebraic formulation of renormalization. International Journal of Modern Physics, A19, 2739–2754. hep–th/0301015v2.Google Scholar
  81. 81.
    Figueroa, H., & Gracia-Bondia, J. M. (2005). Combinatorial Hopf algebras in quantum field theory. I. Reviews in Mathematical Physics, 17, 881–961. hep–th/0408145v2.Google Scholar
  82. 82.
    Fitch, V. L. (1981). The discovery of charge conjugation parity asymmetry. Reviews of Modern Physics, 53, 367–371.ADSCrossRefGoogle Scholar
  83. 83.
    Fock, V. (1933). C. R. Leningrad (N.S.) no. 6, pp. 267–271.Google Scholar
  84. 84.
    Freedman, D. Z., van Nieuwenhuizen, P., & Ferrara, S. (1976). Progress toward a theory of supergravity. Physical Review, B13, 3214–3218.ADSMathSciNetGoogle Scholar
  85. 85.
    French, J. B., & Weisskopf, V. F. (1949). The electromagnetic shift of energy levels. Physical Review, 75, 1240–1248.ADSzbMATHCrossRefGoogle Scholar
  86. 86.
    Friedman, J. I., & Telegdi, V. L. (1957). Nuclear emulsion evidence for parity nonconservation in the decay chain π +μ +e +. Physical Review, 105, 1681–1682.ADSCrossRefGoogle Scholar
  87. 87.
    Fritzsch, H., & Gell-Mann, M. (1972). Quatks and what else? In J. D. Jackson, & A. Roberts (Eds.), Proceedings of the XVI International Conference on High Energy Physics (Vol. 2). Chicago: Chicago University Press.Google Scholar
  88. 88.
    Fukuda, H., Miyamoto, Y., & Tomonaga, S. (1949a). A self consistent method in the quantum field theory. II-1. Progress of Theoretical Physics, 4, 47–59.ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    Fukuda, H., Miyamoto, Y., & Tomonaga, S. (1949b). A self consistent method in the quantum field theory. II-2. Progress of Theoretical Physics, 4, 121–129.ADSMathSciNetCrossRefGoogle Scholar
  90. 90.
    Furry, W. H., & Oppenheimer, J. R. (1934). On the theory of the electron and positive. Physical Review, 45, 245–262.ADSzbMATHCrossRefGoogle Scholar
  91. 91.
    Garwin, R. L. et al. (1957). Observations of the failure of conservation of parity and charge conjugation in meson decays: The magnetic moment of the free muon. Physical Review, 105, 1415–1417.ADSCrossRefGoogle Scholar
  92. 92.
    Gell-Mann, M. (1972). Quarks. Acta Physica Austriaca Supplement IX, 9, 733–761.Google Scholar
  93. 93.
    Gell-Mann, M., & Low, F. E. (1954). Quantum electrodynamics at small distances. Physical Review, 95, 1300–1312.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Georgi, H., Quinn, H. R., & Weinberg, S. (1974). Hierarchy of interactions in unified gauge theories. Physical Review Lett, 33, 451–454.ADSCrossRefGoogle Scholar
  95. 95.
    Gershtein, S. S., & Zel’dovich, Y. B. (1956). On corrections from mesons to the theory of β-decay. Soviet Physics JETP, 2, 576. Original Russian version: Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 29, 698 (1955)Google Scholar
  96. 96.
    Glashow, S. L. (1961). Partial symmetries of weak interactions. Nuclear Physics, 22, 579–588.ADSCrossRefGoogle Scholar
  97. 97.
    Glashow, S. L. (1980). Towards a unified theory: Threads in a tapestry. Reviews of Modern Physics, 52, 539–543.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Gliozzi, F., Scherk, J., & Olive, D. (1976). Supergravity and the spinor dual model. Physics Letters, 65B, 282–286.ADSCrossRefGoogle Scholar
  99. 99.
    Gliozzi, F., Scherk, J., & Olive, D. (1977). Supersymmetry, supergravity theories and the dual Spinorl model. Nuclear Physics, B22, 253–290.ADSCrossRefGoogle Scholar
  100. 100.
    Gol’fand, A., & Likhtman, E. P. (1971). Extension of the Poincaré Group Generators and Violation of P Invariance. JETP Letters, 13, 323–326. Reprinted in Ferrara (1987).Google Scholar
  101. 101.
    Gordon, W. (1926). Der Compton Effect nach der Schrödingerschen Theorie. Zeitschrift fur Physik, 40, 117–133.ADSzbMATHCrossRefGoogle Scholar
  102. 102.
    Green, M. B., & Schwarz, J. H. (1981). Supersymmetrical dual string theory. Nuclear Physics, B181, 502–530.ADSCrossRefGoogle Scholar
  103. 103.
    Green, M. B., & Schwarz, J. H. (1982). Supersymmetrical string theories. Physics Letters, 109B, 444–448.ADSCrossRefGoogle Scholar
  104. 104.
    Greenberg, O. W. (1964). Spin and unitary spin independence in a paraquark model of baryons and mesons. Physical Review Letters, 13, 598–602.ADSCrossRefGoogle Scholar
  105. 105.
    Greenberg, O. W., & Zwanziger, D. (1966). Saturation in triplet models of hadrons. Physical Review, 150, 1177–1180.ADSCrossRefGoogle Scholar
  106. 106.
    Gross, D., & Wilczek, F. (1973). Ultraviolet behavior of non-Abelian gauge theories. Physical Review Letters, 30, 1342–1346.ADSCrossRefGoogle Scholar
  107. 107.
    Gross, D. J., Harvey, J. A., Martinec, E. J., & Rhom, R. (1985a). Heterotic string theory (I). The free hetrotic string. Nuclear Physics, B256, 253–284.ADSCrossRefGoogle Scholar
  108. 108.
    Gross, D. J., Harvey, J. A., Martinec, E. J., Rohm, R. (1985b). The heterotic string. Physical Review Letters, 54, 502–505.ADSMathSciNetCrossRefGoogle Scholar
  109. 109.
    Gubser, S. S., Klebanov, I. R., & Polyakov, A. M. (1998). Gauge theory correlations from non-critical string theory. Physics Letters, B428, 105–114. (hep-th/9802150).ADSMathSciNetCrossRefGoogle Scholar
  110. 110.
    Guralnik, G. S., Hagen, C. R., & Kibble, T. W. B. (1964). Global conservation laws and massless particles. Physical Review Letters, 13, 585–587.ADSCrossRefGoogle Scholar
  111. 111.
    Han, M. Y., & Nambu, Y. (1965). Three-triplet model with double SU(3) symmetry. Physical Review, 139, B1006–B1010.ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    Hasert, F. J. et al. (1973). Observation of neutrino-like interactions without muon-electron in the Gargamellr neutrino experiment. Physics Letters, B 46, 138–140.ADSCrossRefGoogle Scholar
  113. 113.
    Hasert, F. J. et al. (1973). Search for elastic muon-neutrino electron scattering. Physics Letters, B 46, 121–124.ADSCrossRefGoogle Scholar
  114. 114.
    Hawking, S. W. (1974). Black hole explosions? Nature, 248, 230–231.CrossRefGoogle Scholar
  115. 115.
    Hawking, S. W. (1975). Particle creation by Black Holes. Communications in Mathematical Physics, 43, 199–220.ADSMathSciNetCrossRefGoogle Scholar
  116. 116.
    Heisenberg, W., & Pauli, W. (1929). Zur Quantenelektrodynamic der Wellenfelder, I. Zeitschrift fur Physik, 56, 1–61.ADSzbMATHCrossRefGoogle Scholar
  117. 117.
    Heisenberg, W., & Pauli, W. (1930). Zur Quantenelektrodynamic der Wellenfelder, II. Zeitschrift fur Physik, 59, 168–190.ADSzbMATHCrossRefGoogle Scholar
  118. 118.
    Hepp, K. (1966). Proof of the Bogoliubov-Parasiuk theorem of renormalization. Communications in Mathematical Physics, 2, 301–326.ADSzbMATHCrossRefGoogle Scholar
  119. 119.
    Higgs, P. W. (1964a). Broken symmetries, massles particles and gauge fields. Physics Letters, 12, 132–133.ADSCrossRefGoogle Scholar
  120. 120.
    Higgs, P. W. (1964b). Broken symmetries and the masses of Gauge Bosons. Physical Review Letters, 13, 508–509.ADSMathSciNetCrossRefGoogle Scholar
  121. 121.
    Higgs, P. W. (1966). Spontaneous symmetry breaking without massless particles. Physical Review, 145, 1156–1163.ADSMathSciNetCrossRefGoogle Scholar
  122. 122.
    Horowitz, G. T. (2005). Spacetime in string theory. New Journal of Physics, 7, 201 (1–13).ADSMathSciNetCrossRefGoogle Scholar
  123. 123.
    Horowitz, G., Lowe, D. A., & Maldacena, J. (1996). Statistical entropy of non-extremal four dimensional black holes and U-duality. Physical Review Letters, 77, 430–433.ADSCrossRefGoogle Scholar
  124. 124.
    Howe, P. S., & Stelle, K. S. (2003). Supersymmetry counterterms revisited. Physics Letters, B554, 190–196. hep–th/0211279v1.Google Scholar
  125. 125.
    Jordan, P., & Pauli, W. (1928). Zur Quantenelektrodynamic Ladungfreier Felder. Zeitschrift fur Physik, 47, 151–173.ADSCrossRefGoogle Scholar
  126. 126.
    Jordan, P., & Wigner, E. (1928). Über das Paulische Äquivalenzverbot. Zeitschrift fur Physik, 47, 631–651. Reprinted in Schwinger (1958a).Google Scholar
  127. 127.
    Kibble, T. W. B. (1968). Symmetry breaking in non-abelian gauge theories. Physical Review, 155, 1554–1561.ADSCrossRefGoogle Scholar
  128. 128.
    Klein, O. (1926). Quantentheorie und Fünfdimensionale Relativitätstheorie. Zeitschrift fur Physik, 37, 895–906.ADSzbMATHCrossRefGoogle Scholar
  129. 129.
    Klein, O. (1948). Mesons and nuclei. Nature, 161, 897–899.ADSCrossRefGoogle Scholar
  130. 130.
    Kramers, H. A. (1948). Non-relativistic quantum-electrodynamics and correspondence principle. In Rapport et Discussions du 8e Conseil de Physique Solvay 1948 (pp. 241–265). R. Stoop, Bruxelles, 1950.Google Scholar
  131. 131.
    Kreimer, D. (1999). On the Hopf algebra structure of perturbative quantum field theory. Advances in Theoretical and Mathematical Physics, 2, 303–334.MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Kreimer, D. (2003). New mathematical structures in renormalizable quantum field theories. Annals of Physics, 303, 179–202.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Kroll, N. M., & Lamb, W. E. (1949). On the self-energy of a bound electron. Physical Review, 75, 388–398. Reprinted in Schwinger (1958a).Google Scholar
  134. 134.
    Lamb, W. E., Jr., & Retherford, R. C. (1947). Fine structure of the hydrogen atom by a microwave method. Zeitschrift fur Physik, 72, 241–243. Reprinted in Schwinger (1958a).Google Scholar
  135. 135.
    Landsman, N. P. (1989). Large-mass and high-temperature behaviour in perturbative quantum field theory. Communications in Mathematical Physics, 125, 643–660.ADSMathSciNetCrossRefGoogle Scholar
  136. 136.
    Lattes, C. M. G. et al. (1947). Processes involving charged mesons. Nature, 159, 694–697.ADSCrossRefGoogle Scholar
  137. 137.
    Lederman, L., & Teresi, D. (2006). The god particle: If the universe is the answer, what is the question? New York: Mariner Books.Google Scholar
  138. 138.
    Lee, T. D., & Yang, C. N. (1956). Question of parity conservation in weak interactions. Physical Review, 104, 254–258. See also ibid. 106, 1671 (1957).Google Scholar
  139. 139.
    Lee, B., & Zinn-Justin, J. (1972a). Spontaneously Broken Gauge symmetries. I. Preliminaries. Physical Review, D5, 3121–3137.ADSGoogle Scholar
  140. 140.
    Lee, B., & Zinn-Justin, J. (1972b). Spontaneously Broken Gauge symmetries. II. Perturbation theory and renormalization. Physical Review, D5, 3137–3155.ADSGoogle Scholar
  141. 141.
    Lee, B., & Zinn-Justin, J. (1972c). Spontaneously Broken Gauge symmetries. III. Equivalence. Physical Review, D5, 3155–3160.ADSGoogle Scholar
  142. 142.
    Lee, B., & Zinn-Justin, J. (1973). Spontaneously Broken Gauge symmetries. IV. general Gauge formulation. Physical Review, D7, 1049–1056.ADSGoogle Scholar
  143. 143.
    Lieb, E. H. (1979). The N 5∕3 law for bosons. Physics Letters, A70(2), 71–73. Reprinted in Thirring (2005).Google Scholar
  144. 144.
    Lieb, E. H., & Thirring, W. E. (1975). Bound for the kinetic energy of fermions which proves the stability of matter. Physical Review Letters, 35(16), 687–689. [Erratum ibid., 35(16), 1116 (1975).] Reprinted in Thirring (2005).Google Scholar
  145. 145.
    Lovelace, C., & Squires, E. (1970). Veneziano theory. Proceedings of the Royal Society of London, A318, 321–353.Google Scholar
  146. 146.
    Maldacena, J. (1998). The large N limit of superconformal theories and gravitation. Advances in Theoretical and Mathematical Physics, 2, 231–252. (hep-th/9711200).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Manoukian, E. B. (1976). Generalization and improvement of the Dyson-Salam renormalization scheme and equivalence with other schemes. Physical Review, D14, 966–971. ibid., 2202 (E).Google Scholar
  148. 148.
    Manoukian, E. B. (1979). Subtractions vs counterterms. Nuovo Cimento, 53A, 345–358.ADSMathSciNetCrossRefGoogle Scholar
  149. 149.
    Manoukian, E. B. (1983a). Renormalization. New York/London/Paris: Academic.zbMATHGoogle Scholar
  150. 150.
    Manoukian, E. B. (1986a). Action principle and quantization of gauge fields. Physical Review, D34, 3739–3749.ADSMathSciNetGoogle Scholar
  151. 151.
    Manoukian, E. B. (2006). Quantum theory: A wide spectrum. Dordrecht: Springer.zbMATHGoogle Scholar
  152. 152.
    Manoukian, E. B. (2012a). All the fundamental massless bosonic fields in bosonic string theory. Fortschritte der Physik, 60, 329–336.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Manoukian, E. B. (2012b). All the fundamental bosonic massless fields in superstring theory. Fortschritte der Physik, 60, 337–344.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    Manoukian, E. B. (2012c). All the fundamental massless fermion fields in supersring theory: A rigorous analysis. Journal of Modern Physics, 3, 1027–1030.ADSCrossRefGoogle Scholar
  155. 155.
    Manoukian, E. B. (2012d). The explicit pure vector superfield in Gauge theories. Journal of Modern Physics, 3, 682–685.ADSCrossRefGoogle Scholar
  156. 156.
    Manoukian, E. B., & Muthaporn, C. (2003). N 5∕3 Law for bosons for arbitrary large N. Progress of Theoretical Physics, 110(2), 385–391.ADSzbMATHCrossRefGoogle Scholar
  157. 157.
    Manoukian, E. B., & Sirininlakul, S. (2005). High-density limit and inflation of matter. Physical Review Letters, 95, 190402: 1–3.Google Scholar
  158. 158.
    Marciano, W., & Pagels, H. (1978). Quantum chromodynamics. Physics Reports, C36, 137–276.ADSCrossRefGoogle Scholar
  159. 159.
    Martin, P. C., & Glashow, S. L. (2008). Julian Schwinger 1918–1994: A biographical memoir. National Academy of Sciences, Washington, DC, Copyright 2008.Google Scholar
  160. 160.
    Meissner, K. (2004). Black-Hole entropy in loop quantum gravity. Classical Quantum Gravity, 21, 5245–5251.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    Mohapatra, R. N. (1971). Feynman rules for the Yang-Mills field: A canonical quantization approach. I, II. Physical Review, D4, 378–392, 1007–1017.ADSGoogle Scholar
  162. 162.
    Mohapatra, R. N. (1972). Feynman rules for the Yang-Mills field: A canonical quantization approach. III. Physical Review, D4, 2215–2220.ADSGoogle Scholar
  163. 163.
    Nambu, Y. (1966). A systematic of hadrons in subnuclear physics. In A. de Shalit, H. Feshback, & L. van Hove (Eds.), Preludes in theoretical physics in Honor of V. F. Weisskopf (p. 133). Amsterdam: North-Holland.Google Scholar
  164. 164.
    Nambu, Y. (1969). In: Proceedings of the Internatinal Conference on Symmetries and Quark Models (p. 269), Wayne State University. New York: Gordon and Breach, 1970.Google Scholar
  165. 165.
    Neveu, A., & Schwarz, J. H. (1971a). Factorizable dual model of pions. Nuclear Physics, B31, 86–112.ADSCrossRefGoogle Scholar
  166. 166.
    Nielsen, H. (1970). Internatinal Conference on High Energy Physics, Kiev Conference, Kiev.Google Scholar
  167. 167.
    Olive, K. A. et al. (2014). Particle data group. Chinese Physics C, 38, 090001.ADSCrossRefGoogle Scholar
  168. 168.
    Oppenheimer, J. R. (1930). Note on the theory of the interaction of field and matter. Physical Review, 35, 461–477.ADSzbMATHCrossRefGoogle Scholar
  169. 169.
    Ovsyannikov, L. V. (1956). General solution to renormalization group equations. Doklady Akademii Nauk SSSR, 109, 1112–1115.MathSciNetzbMATHGoogle Scholar
  170. 170.
    Pauli, W., & Weisskopf, V. (1934). Über die Quantisierung der Skalaren Relativistischen Wellengleichung. Helvetica Physica Acta, 7, 709–731.zbMATHGoogle Scholar
  171. 171.
    Penrose, R. (1971). In T. Bastin (Ed.), Quantum theory and beyond (pp. 151–180). Cambridge: Cambridge University Press.Google Scholar
  172. 172.
    Politzer, H. D. (1973). Reliable perturbative results for strong interactions. Physical Review Letters, 30, 1346–1349.ADSCrossRefGoogle Scholar
  173. 173.
    Raymond, P. (1971). Dual theory for free fermions. Physical Review, D3, 2415–2418.ADSMathSciNetGoogle Scholar
  174. 174.
    Rovelli, C., & Smolin, L. (1995). Discreteness of area and volume in quantum gravity. Nuclear Physics, B442, 593–622.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    Rovelli, C., & Vidotto, F. (2015). Covariant loop quantum gravity. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  176. 176.
    Rubbia, C. (1984). Experimental observation of the intermediate vecor bosons, W +, W and Z 0. Nobel Lecture, 8 December (pp. 240–287).Google Scholar
  177. 177.
    Sakharov, A. D. (1967). Violation of CP invariance, C asymmetry, and Baryon asymmetry of the universe. Soviet Physics – JETP Letters, 5, 24–27.ADSGoogle Scholar
  178. 178.
    Sakurai, J. J. (1958). Mass reversal and weak interactions. Nuovo Cimento, 7, 649–660.CrossRefGoogle Scholar
  179. 179.
    Salam, A. (1951a). Overlapping divergences and the S-matrix. Physical Review, 82, 217–227.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    Salam, A. (1951b). Divergent integrals in renormalizable field theories. Physical Review, 84, 426–431.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    Salam, A. (1962). Renormalizability of gauge theories. Phys. Rev, 127, 331–334.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Salam, A. (1968). Weak and electromagnetic interactions. In N. Svartholm (Ed.), Elementary Particle Theory, Proceedings of the 8th Nobel Symposium, Almqvist and Wiksell, Stockholm.Google Scholar
  183. 183.
    Salam, A. (1980). Grand unification and fundamental forces. Reviews of Modern Physics, 52, 525–538.ADSMathSciNetCrossRefGoogle Scholar
  184. 184.
    Salam, A., & Strathdee, J. (1974a). Supersymmetry and non-abelian gauges. Physics Letters, 51B, 353–355. Reprinted in Ferrara (1987).Google Scholar
  185. 185.
    Salam, A., & Strathdee, J. (1974b). Supergauge Transformations. Nuclear Physics, B76, 477–482.ADSMathSciNetCrossRefGoogle Scholar
  186. 186.
    Salam, A., & Strathdee, S. (1975b). Feynman rules for superfields. Nuclear Physics, B86, 142–152.ADSMathSciNetCrossRefGoogle Scholar
  187. 187.
    Salam, A., & Ward, J. (1959). Weak and electromagnetic interactions. Nuovo Cimento, 11, 568–577.MathSciNetzbMATHCrossRefGoogle Scholar
  188. 188.
    Salam, A., & Ward, J. (1961). On a gauge theory of elementary interactions. Nuovo Cimento, 19, 165–170.MathSciNetzbMATHCrossRefGoogle Scholar
  189. 189.
    Salam, A., & Ward, J. (1964). Electromagnetic and weak interactions. Physics Letters, 13, 168–170.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    Scherk, J., & Schwarz, J. H. (1974). Dual models for non-hadrons. Nuclear Physics, B81, 118–144.ADSCrossRefGoogle Scholar
  191. 191.
    Schwarz, J. H. (1997). Lectures on superstrings and m-theory. Nuclear Physics Supp., B55, 1–32, hep–th/9607201.Google Scholar
  192. 192.
    Schwinger, J. (1948). On Quantum-electrodynamics and the magnetic moment of the electron. Physical Review, 73, 416.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  193. 193.
    Schwinger, J. (1951). On gauge invariance and vacuum polarization. Physical Review, 82, 664–679.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  194. 194.
    Schwinger, J. (1951a). On the Green’s functions of quantized fields. I. Proceedings of the National academy of Sciences of the United States of America, 37, 452–455.Google Scholar
  195. 195.
    Schwinger, J. (1951b). The theory of quantized fields. I. Physical Review, 82, 914–927.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  196. 196.
    Schwinger, J. (1953). The theory of quantized fields. II, III. Physical Review, 91, 713–728, 728–740.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    Schwinger, J. (1954). The theory of quantized fields. V. Physical Review, 93, 615–628.ADSMathSciNetCrossRefGoogle Scholar
  198. 198.
    Schwinger, J. (Editor) (1958a). Selected Papers on Quantum Electrodynamics. New York: Dover.zbMATHGoogle Scholar
  199. 199.
    Schwinger, J. (1958b). A theory of fundamental interactions. Annals of Physics, 2, 404–434.MathSciNetGoogle Scholar
  200. 200.
    Schwinger, J. (1962a). Gauge invariance and mass. II. Physical Review, 128, 2425–2429.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    Schwinger, J. (1972). Relativistic quantum field theory. In Nobel Lectures, Physics 1963–1970, 11 Dec 1965. Amsterdam: Elsevier.Google Scholar
  202. 202.
    Schwinger, J. (1973a). A report on quantum electrodynamics. In J. Mehra (Ed.), The physicist’s conception of nature. Dordrecht-Holland: D. Reidel Publishing Company.Google Scholar
  203. 203.
    Shaw, R. (1955). The problem of particle types and other contributions to the theory of elementary particles. Ph.D. Thesis, Cambridge University.Google Scholar
  204. 204.
    Stelle, K. S. (1977). Renormalization of higher-derivative quantum gravity. Physical Review, D16, 953–969.ADSMathSciNetGoogle Scholar
  205. 205.
    Stelle, K. S. (2001). Revisiting supergravity and super Yang-Mills renormalization. In J. Lukierski & J. Rembielinski (Eds.), Proceedings of the 37th Karpacz Winter School of Theoretical Physics, Feb 2001. hep-th/0203015v1.Google Scholar
  206. 206.
    Stelle, K. S. (2012). String theory, unification and quantum gravity. In 6th Aegean Summer School, “Quantum Gravity and Quantum Cosmology”, 12–17 Sept 2011, Chora, Naxos Island. hep-th/1203.4689v1.Google Scholar
  207. 207.
    Streater, R. F. (1985). Review of renormalization by E. B. Manoukian. Bulletin of London Mathematical Society, 17, 509–510.CrossRefGoogle Scholar
  208. 208.
    Strominger, A., & Fava, G. (1996). Microscopic origin of the ‘Bekenstein-Hawking Entropy’. Physics Letters, B379, 99–104.ADSMathSciNetCrossRefGoogle Scholar
  209. 209.
    Stueckelberg, E. C. G., & Peterman, A. (1953). La Normalisation des Constantes dans la Théorie des Quanta. Helvetica Physica Acta, 26, 499–520.MathSciNetzbMATHGoogle Scholar
  210. 210.
    Sudarshan, E. C. G., & Marshak, R. (1958). Chirality invariance and the universal fermi interaction. Physical Review, 109, 1860–1862.ADSCrossRefGoogle Scholar
  211. 211.
    Susskind, L. (1970). Dual symmetric theory of hadrons. I. Nuovo Cimento, 69A, 457–496.ADSMathSciNetCrossRefGoogle Scholar
  212. 212.
    Susskind, L. (1995). The world as a hologram. Journal of Mathematics and Physics, 36, 6377–6396.MathSciNetzbMATHCrossRefGoogle Scholar
  213. 213.
    Symanzik, K. (1970). Small distance behaviour in field theory and power counting. Communications in Mathematical Physics, 18, 227–246.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  214. 214.
    Symanzik, K. (1971). Small distance behavior in field theory. In G. Höhler (Ed.), Springer tracts in modern physics (Vol. 57). New York: Springer.Google Scholar
  215. 215.
    symanzik, k. (1971). small distance behaviour analysis in field theory and Wilson expansions. Communications in Mathematical Physics, 23, 49–86.Google Scholar
  216. 216.
    ’t Hooft, G. (1971a). Renormalizable of massless Yang-Mills fields. Nuclear Physics, B33, 173–199.Google Scholar
  217. 217.
    ’t Hooft, G. (1971b). Renormalizable Lagrangians for massive Yang-Mills fields. Nuclear Physics, B35, 167–188.Google Scholar
  218. 218.
    ’t Hooft, G. (1973). Dimensional regularization and the renormalization group. Nuclear Physics, B61, 455–468.Google Scholar
  219. 219.
    ’t Hooft, G. (1987). Can spacetime be probed below string size? Physics Letters, B198, 61–63.Google Scholar
  220. 220.
    ’t Hooft, G. (1995). Black holes and the dimensional reduction of spacetime. In Lindström, U. (Ed.), The Oskar Klein Centenary, 19–21 Sept 1994, Stockholm, (1994), World Scientific. See also: “Dimensional Reduction in Quantum gravity”, Utrecht preprint THU-93/26 (gr-qg/9310026).Google Scholar
  221. 221.
    ’t Hooft, G., & Veltman, M. J. G. (1972). Regularization and Renormalization of gauge fields. Nuclear Physics, B44, 189–213.Google Scholar
  222. 222.
    Thirring, W. E. (Ed.). (2005). The stability of matter: From atoms to stars: Selecta of Elliott H. Lieb (4th ed.). Berlin: Springer.Google Scholar
  223. 223.
    Thorn, C. B. (1991). Reformulating string theory with the 1∕N expansion. In International A. D. Sakharov Conference on Physics, Moscow (pp. 447–454). (hep-th/9405069).Google Scholar
  224. 224.
    Tomboulis, E. T. (1984). Unitarity in higher-derivative quantum gravity. Physical Review Letters, 52, 1173–1176.ADSCrossRefGoogle Scholar
  225. 225.
    Tomonaga, S. (1972). Development of quantum electrodynamics: Personal recollections. In Nobel Lectures, Physics 1963–1970, 6 May 1966, Amsterdam: Elsevier Publishing Company.Google Scholar
  226. 226.
    Tomonaga, S.-I. (1997). The story of spin. Chicago: University of Chicago Press. Translated by T. Oka.Google Scholar
  227. 227.
    Townsend, P. K. (1995). The eleven-dimensional supermembrane revisited. Physics Letters, B350, 184–187, hep–th/9501068.Google Scholar
  228. 228.
    Utiyama, R., & Sakamoto, J. (1976). Canonical quantization of non-abelian gauge fields. Progress of Theoretical Physics, 55, 1631–1648.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    Vanyashin, V. S., & Terentyev, M. V. (1965). Soviet Physics JETP, 21, 375–380. Original Russian Version: Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 48, 565 (1965)Google Scholar
  230. 230.
    Veltman, M. J. G. (1981). The infrared-ultraviolet connection. Acta Physica Polonica, B12, 437.Google Scholar
  231. 231.
    Veneziano, G. (1968). Construction of a crossing-symmetric regge-behaved amplitude for linearly rising trajectories. Nuovo Cimento, 57A, 190–197.ADSCrossRefGoogle Scholar
  232. 232.
    Volkov, D. V., & Akulov, V. P. (1973). Is the neutrino a goldstone particle. Physics Letters, 46B, 109–110. Reprinted in Ferrara (1987).Google Scholar
  233. 233.
    Waller, I. (1930a). Die Streuung von Strahlung Durch Gebundene und Freie Elektronen Nach der Diracshen Relativistischen Mechanik. Zeitschrift fur Physik, 61, 837–851.ADSzbMATHCrossRefGoogle Scholar
  234. 234.
    Waller, I. (1930b). Bemerkung über die Rolle der Eigenenergie des Elektrons in der Quantentheorie der Strahlung. Zeitschrift fur Physik, 62, 673–676.ADSzbMATHCrossRefGoogle Scholar
  235. 235.
    Weinberg, S. (1960). High-energy behavior in quantum field theory. Physical Review, 118, 838–849.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  236. 236.
    Weinberg, S. (1967). A model of leptons. Physical Review Letters, 19, 1264–1266.ADSCrossRefGoogle Scholar
  237. 237.
    Weinberg, S. (1973). New approach to renormalization group. Physical Review, D8, 3497–3509.ADSGoogle Scholar
  238. 238.
    Weinberg, S. (1980). Conceptual foundations of the unified theory of weak and electromagnetic interactions. Reviews of Modern Physics, 52, 515–523.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  239. 239.
    Weisskopf, V. F. (1934). Über die Selbstenergie des Elektrons. Zeitschrift fur Physik, 89, 27–39.ADSzbMATHCrossRefGoogle Scholar
  240. 240.
    Weisskopf, V. F. (1939). On the self-energy of the electromagnetic field of the electron. Physical Review, 56, 72–85.ADSzbMATHCrossRefGoogle Scholar
  241. 241.
    Weisskopf, V. F. (1979). Personal impressions of recent trends in particle physics. CERN Ref.Th. 2732, CERN, Geneva, Aug 1979. [Also presented at the 17 International School of Subnuclear Physics “Ettore Majorana”, Erice, 31 July-11 August, 1979. pp.1–9, (ed. A. Zichichi), Plenum, New York,1982].Google Scholar
  242. 242.
    Weisskopf, V. F. (1980). Growing up with field theory, and recent trends in particle physics. “The 1979 Bernard Gregory Lectures at CERN”, 29 pages, CERN, Geneva.Google Scholar
  243. 243.
    Wess, J., & Zumino, B. (1974a). Supergauge transformations in four dimensions. Nuclear Physics, B70, 39–50. Reprinted in Ferrara (1987).Google Scholar
  244. 244.
    Witten, E. (1995). String theory dynamics in various dimensions. Nuclear Physics, B443, 85–126, hep–th/9503124.Google Scholar
  245. 245.
    Witten, E. (1998). Anti-de-Sitter space and holography. Advances in Theoretical and Mathematical Physics, 2, 253–291. (hep-th/9802150).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  246. 246.
    Wu, C. S. et al. (1957). Experimental tests of parity conservation in beta decay. Physical Review, 105, 1413–1415.ADSCrossRefGoogle Scholar
  247. 247.
    Yang, C. N., & Mills, R. L. (1954). Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96, 191–195.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  248. 248.
    Yoneya, T. (1974). Connection of dual models to electrodynamics and gravidynamics. Progress of Theoretical Physics, 51, 1907–1920.ADSCrossRefGoogle Scholar
  249. 249.
    Yukawa, H. (1935). On the interaction of elementary particles. I. Proceedings of the Physical Mathematical Society Japan, 17, 48–57. Reprinted in “Foundations of Nuclear Physics”, (ed. R. T. Beyer), Dover Publications, Inc. New York (1949).Google Scholar
  250. 250.
    Zeidler, E. (2009). Quantum field theory II: Quantum electrodynamics. Berlin: Springer.zbMATHGoogle Scholar
  251. 251.
    Zimmermann, W. (1969). Convergence of Bogoliubov’s method of renormalization in momentum space. Communications in Mathematical Physics, 15, 208–234.ADSMathSciNetzbMATHCrossRefGoogle Scholar

Recommended Reading

  1. 1.
    Becker, K, Becker, M., & Schwarz, J. H. (2006). String theory and M-theory: A modern introduction. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  2. 2.
    Davies, P. (Ed.). (1989). The new physics. Cambridge: Cambridge University Press.Google Scholar
  3. 3.
    DeWitt, B. (2014). The global approach to quantum field theory. Oxford: Oxford University Press.zbMATHGoogle Scholar
  4. 4.
    Manoukian, E. B. (1983). Renormalization. New York/London/Paris: Academic Press.zbMATHGoogle Scholar
  5. 5.
    Manoukian, E. B. (2006). Quantum theory: A wide spectrum. Dordrecht: Springer.zbMATHGoogle Scholar
  6. 6.
    Manoukian, E. B. (2016). Quantum field theory II: Introductions to quantum gravity, supersymmetry, and string theory. Dordrecht: Springer.zbMATHCrossRefGoogle Scholar
  7. 7.
    Martin, P. C., & Glashow, S. L. (2008). Julian Schwinger 1918–1994”: A Bio-graphical memoir. National Academy of Sciences, Washington, DC, Copyright 2008.Google Scholar
  8. 8.
    Oriti, D. (Ed.), (2009). Approaches to quantum gravity. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  9. 9.
    Schweber, S. S. (2008). Quantum field theory: From QED to the standard model In M. Jo Nye (Ed.), The Cambridge history of science. The modern physical and mathematical sciences (Vol. 5, pp. 375–393). Cambridge: Cambridge University Press.Google Scholar
  10. 10.
    Streater, R. F. (1985). Review of Renormalization by E. B. Manoukian. Bulletin of London Mathematical Society, 17, 509–510.CrossRefGoogle Scholar
  11. 11.
    Weinberg. S. (2000). The quantum theory of fields. III: supersymmetry. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  12. 12.
    Weisskopf, V. F. (1980). Growing up with field theory, and recent trends in particle physics. The 1979 Bernard Gregory Lectures at CERN, 29 pages. “Personal Impressions of Recent Trends in Particle Physics”. CERN Ref. Th. 2732 (1979). CERN, Geneva.Google Scholar
  13. 13.
    Zeidler, E. (2009). Quantum field theory II: Quantum electrodynamics. Berlin: Springer. pp. 972–975.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edouard B. Manoukian
    • 1
  1. 1.The Institute for Fundamental StudyNaresuan UniversityPhitsanulokThailand

Personalised recommendations