Skip to main content

Some “Special” Topics: (Section 8.1) Solvation, (Section 8.2) Singlet Diradicals, (Section 8.3) A Note on Heavy Atoms and Transition Metals

  • Chapter
  • First Online:

Abstract

For some purposes solution-phase computations are necessary, e.g. for understanding certain reactions, and for the prediction of pK a in solution. For introducing the effects of solvation there are two methodologies (and hybrids of these two): microsolvation or explicit solvation, and continuum solvation.

Some molecular species are not calculated properly by straightforward model chemistries: these include singlet diradicals and some excited state species. For these the standard method is the complete active space approach, CAS (CASSCF, complete active space SCF). This is a limited version of configuration interaction, in which electrons are promoted from and to a carefully chosen set of molecular orbitals.

For systems with heavy atoms we often employ pseudopotential basis sets (frequently relativistic), which reduce the computational burden of large numbers of electrons. Transition metals present problems beyond those of main-group heavy atoms: not only can relativistic effects be significant, but electron d- or f-levels, variably perturbed by ligands, make possible several electronic states. Also, nearly degenerate s and d levels can cause convergence problems. DFT calculations, with pseudopotentials, are the standard approach for computation on such compounds.

Chapters 1–7: (a) addressed molecules as isolated entities, without reference to their surroundings (except for the water dimer); (b) concentrated on calculations by relatively “automatic” model chemistries ; and (c) used mainly organic molecules as illustrations. This chapter to some extent redresses these constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A. Klamt, personal communication, 2010 March 13.

References

  1. Modern physics views the vacuum as a “false vacuum”, seething with “virtual particles”: The study of these concepts belongs to quantum field theory: (a) For a reflective exposition of this largely in words (!) See Teller P (1995) An interpretive introduction to quantum field theory. Princeton University Press, Princeton; (b) A detailed account of the subject by a famous participant is given in Weinberg S (1995) The quantum theory of fields. Cambridge University Press, Cambridge; particularly vol I, Foundations

    Google Scholar 

  2. Krieger JH (1992) Chem Eng News, May 11, p 40

    Google Scholar 

  3. Luberoff BJ (1992) Chem Eng News, June 15, p 2

    Google Scholar 

  4. Pilar FJ (1992) Chem Eng News, June 29, p 2

    Google Scholar 

  5. Sousa SP, Fernandes PA, Ramos MJ (2009) J Phys Chem A 113:14231

    Article  CAS  Google Scholar 

  6. (a) Kenny JP, Krueger KM, Rienstra-Kiracofe JC, Schaefer HF (2001) J Phys Chem A 105:7745; (b) Lewars E (2000) J Mol Struct (Theochem) 507:165; (c) Lewars E (1998) J Mol Struct (Theochem) 423:173, and references therein to earlier work

    Google Scholar 

  7. Fliegl H, Sundholm D, Taubert S, Jusélius J, Klopper W (2009) J Phys Chem A 113:8668

    Article  CAS  Google Scholar 

  8. (a) Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421, and references therein; (b) Liptak MD, Shields GC (2001) J Am Chem Soc 123:7314

    Google Scholar 

  9. (a) Calculations on the stability of \( {{\mathrm{N}}_5}^{+}{{\mathrm{N}}_5}^{-} \) in vacuo and in a crystal: Fau S, Wilson KJ, Bartlett RJ (2002) J Phys Chem A 106:4639. Correction: J Phys Chem A 2004 108:236; (b) Decomposition of polynitrohexaazaadamantanes in crystals: Xu X-J, Zhu W-H, Xiao H-M (2008) J Mol Struct (Theochem) 853:1–6; (c) Nitroexplosives in crystals: Zhang L, Zybin SV, van Duin ACT, Dasgupta S, Goddard III WA (2009) J Phys Chem A 113:10619; (d) General approach to calculating bulk properties of crystals: Hu Y-H (2003) J Am Chem Soc 125:4388; (e) Ab initio modelling of crystals: Dovesi R, Civalleri B, Orlando R, Roetti C, Saunders VR (2005) Rev Comput Chem, volume 21, Lipkowitz KB, Larter R, Cundari TR (eds) (2005) Wiley, Hoboken; (f) Tuckerman ME, Ungar PJ, Rosenvinge T, Klein ML (1996) Molecular dynamics applied to crystals, liquids, and clusters. J Phys Chem 100:12878

    Google Scholar 

  10. Bachrach SM (2014) Computational organic chemistry, 2nd edn. Wiley-Interscience, Hoboken, chapter 7

    Book  Google Scholar 

  11. Thar J, Zahn S, Kirchner B (2008) The minimum requirements for solvating alanine have been examined with the aid of molecular dynamics. J Phys Chem B 112:1456

    Article  CAS  Google Scholar 

  12. (a) See e.g. (a) Leach AR (2001) Molecular modelling, 2nd edn. Prentice Hall, Essex; chapter 7; (b) Harris RC, Pettitt BM (2015) J Chem Theory Comput 11:4593; (c) Deng N, Zhang BW, Levy RM (2015) J Chem Theory Comput 11:2868

    Google Scholar 

  13. (a) Acc Chem Res, 2002 35(6); issue devoted largely to this topic; (b) Setny P (2015) J Chem Theory Comput 11:5961; (c) Yang Z, Doubleday C, Houk KN (2015) J Chem Theory Comput 11:5606

    Google Scholar 

  14. Bickelhaupt FM, Baerends EJ, Nibbering NMM (1996) Chem Eur J 2:196

    Article  CAS  Google Scholar 

  15. Yamataka H, Aida M (1998) Chem Phys Lett 289:105

    Article  CAS  Google Scholar 

  16. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, chapter 11

    Google Scholar 

  17. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, Hoboken, sections 14.6, 14.7

    Google Scholar 

  18. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  19. Marenich AV, Cramer CJ, Truhlar DG (2013) This paper presents “a new kind of treatment” of the dispersion contribution. J Chem Theory Comput 9:3649

    Article  CAS  Google Scholar 

  20. This issue is devoted to solvation, mostly specialized aspects of continuum methods: J Comput Aided Mol Design 2014 28(3)

    Google Scholar 

  21. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  22. Langlet J, Claverie P, Caillet J, Pullman A (1988) J Phys Chem 92:1617

    Article  CAS  Google Scholar 

  23. A series of solvation models designated SM5.x dates from 1998 to 2004. SM6 appeared in 2005. The two most widely-used models as of ca. 2015 are probably: (a) SM8, Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DJ (2007) J Chem Theory Comput 6:2011; Cramer CJ, Truhlar DG, Acc Chem Res 41:760, and (b) SMD, Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378; (c) As of mid-2015 the most recent model in the series is SM12, Marenich AV, Cramer CJ, Truhlar DG (2013) J Chem Theory Comput 9:609; (d) For information on the frequently-appearing SMx models, including their availability in program suites, check the Minnesota Solvation Models and Solvation Software website: http://comp.chem.umn.edu/solvation/

  24. Amovilli C, Floris FM (2015) J Phys Chem A 119:5327

    Article  CAS  Google Scholar 

  25. (a) Benassi R, Ferrari E, Lazarri S, Spagnolo F, Saladini M (2008) IR, UV, NMR. J Mol Struct 892:168; (b) IR, UV, NMR, EPR: Barone V, Crescenzi O, Improta R (2002) Quantitative structure-activity relationships 21:105; (c) NMR: Sadlej J, Pecul M, Mennucci B, Cammi R (eds) (2007) Continuum Solvation Models Chem Phys 125

    Google Scholar 

  26. Foresman JP, Keith TA, Wiberg RB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098

    Article  CAS  Google Scholar 

  27. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

    Article  CAS  Google Scholar 

  28. The first paper on COSMO: Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799

    Google Scholar 

  29. (a) Klamt A (1995) J Phys Chem 99:2224; (b) Klamt A, Jonas V, Burger T, Lorenz JCW (1998) J Phys Chem A 102:5074; (c) Klamt A, Diedenhofen M (2015) J Phys Chem A 119:5439

    Google Scholar 

  30. (a) COSMOlogic: Imbacher Weg 49, 51379 Leverkusen, Germany. http://www.cosmologic.de/index.php; (b) “COSMO-RS: from quantum chemistry to fluid phase thermodynamics and drug design [With CDROM]”, Andreas Klamt, Elsevier, Amsterdam, 2005

  31. Spartan is an integrated molecular mechanics, ab initio and semiempirical program with an input/output graphical interface. It is available in UNIX workstation and PC versions: Wavefunction Inc., http://www.wavefun.com, 18401 Von Karman, Suite 370, Irvine CA 92715, USA. As of mid-2009, the latest version of Spartan was Spartan 09. The name arises from the simple or “Spartan” user interface

  32. Smith MB, March J (2001) Advanced organic chemistry. Wiley, New York, numerous discussions and references

    Google Scholar 

  33. Mo Y, Gao J (2000) J Comput Chem 21:1458

    Article  CAS  Google Scholar 

  34. Ensing B, Meijer EJ, Bloechl PE, Baerends EV (2001) J Phys Chem A 105:3300

    Article  CAS  Google Scholar 

  35. Freedman H, Truong TN (2005) J Phys Chem B 109:4726

    Article  CAS  Google Scholar 

  36. E: Albery WJ, Kreevoy MM (1978) Adv Phys Org Chem 16:87

    Google Scholar 

  37. E. Anslyn V, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalto, p 171

    Google Scholar 

  38. Olmstead WN, Brauman JI (1977) J Am Chem Soc 99:4219

    Article  CAS  Google Scholar 

  39. Bento AP, Solà M, Bickelhaupt FM (2005) J Comput Chem 26:1497

    Article  CAS  Google Scholar 

  40. Bachrach SM (2014) Computational organic chemistry, 2nd edn. Wiley-Interscience, Hoboken, chapter 6

    Book  Google Scholar 

  41. (a) The experimental percentages shown here were deduced from the data in Beak P, Fry FS, Lee J, Steele F (1976) J Am Chem Soc 98:171; (b) Brown RS, Tse A, Vederas JC (1980) J Am Chem Soc 102:1174; (c) Beak P, Covington JB, White JW (1980) J Org Chem 45:1347; (d) Beak P, Covington JB, Smith SG, White JM, Zeigler JM (1980) J Org Chem 45:1354; (e) Beak P (1977) Acc Chem Res 10:186; (f) McCann BW, McFarland S, Acevido O (2015) J Phys Chem A 119:8724

    Google Scholar 

  42. (a) Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) J Phys Chem A 107:9380; (b) Klamt A (2009) Acc Chem Res 42:489

    Google Scholar 

  43. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem A 110:2493

    Article  CAS  Google Scholar 

  44. Cramer CJ, Truhlar DG (2009) Acc Chem Res 42:493

    Article  CAS  Google Scholar 

  45. Eckert F, Diedenhofen M, Klamt A (2010) Mol Phys 108:229

    Article  CAS  Google Scholar 

  46. Liptak MD, Shields GC (2001) J Am Chem Soc 123:7314

    Article  CAS  Google Scholar 

  47. Toth AM, Liptak MD, Phillips DL, Shields GC (2001) J Chem Phys 114:4595

    Article  CAS  Google Scholar 

  48. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421

    Article  CAS  Google Scholar 

  49. As of 2015, the latest “full” version (as distinct from more frequent revisions) of the Gaussian suite of programs was Gaussian 09. Gaussian is available for several operating systems; see Gaussian, Inc., http://www.gaussian.com, 340 Quinnipiac St., Bldg. 40, Wallingford, CT 06492, USA

  50. (a) Feller D, Peterson KA (2007) J Chem Phys 126:114105; (b) Friesner RA, Knoll EH (2006) J Chem Phys 125:124107

    Google Scholar 

  51. http://webbook.nist.gov/chemistry/ quoting (a) Caldwell G, Renneboog R, Kebarle P (1989) Can J Chem 67:661; (b) Fujio M, McIver Jr RT, Taft RW (1981) J Am Chem Soc 103:4017; (c) Cumming JB, Kebarle P (1978) Can J Chem 56:1

  52. Hamad S, Lago S, Mejias JA (2002) J Phys Chem A 106:9104

    Article  CAS  Google Scholar 

  53. Topol IA, Tawa GJ, Burt SK, Rashin AA (1999) J Chem Phys 111:10998

    Article  CAS  Google Scholar 

  54. Okur A, Simmerling C (2006) Annu Rep Comput Chem 2:97

    Article  CAS  Google Scholar 

  55. See e.g. (a) Ratkova EL, Palmer DS, Fedorov MV (2015) Chem Rev 115:6312; (b) Luchko T, Gusarov S, Roe DR, Simmerling C, Case DA, Tuszynski J, Kovalenko A (2010) J Chem Theory Comput 6:607

    Google Scholar 

  56. Pople JA (1970) Acc Chem Res 3:217

    Article  CAS  Google Scholar 

  57. Getty SJ, Davidson ER, Borden WT (1992) J Am Chem Soc 114:2085

    Article  CAS  Google Scholar 

  58. See W. T. Borden, referring to DFT in general, quoted in Bachrach SM (2014) Computational organic chemistry, 2nd edn, Wiley-Interscience, Hoboken; p 281

    Google Scholar 

  59. (a) Hrovat DA, Fang S, Borden WT (1997) J Am Chem Soc 119:5253, and references therein

    Google Scholar 

  60. Berson JA, Pedersen LD, Carpenter BK (1976) J Am Chem Soc 98:122

    Article  CAS  Google Scholar 

  61. Crawford RJ, Mishra A (1965) J Am Chem Soc 87:3768

    Article  CAS  Google Scholar 

  62. Doubleday C Jr (1993) J Am Chem Soc 115:11968

    Article  CAS  Google Scholar 

  63. Polanyi JC, Zewail AH (1995) Acc Chem Res 28:119

    Article  CAS  Google Scholar 

  64. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn, Wiley, Chichester; Appendix D

    Google Scholar 

  65. (a) Kleier DA, Halgren TA, Hall Jr. JH, Lipscomb WN (1974) J Chem Phys 61:3905, and references therein; (b) Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Google Scholar 

  66. (a) Karlstrom G, Lindh R, Malmqvist P-Å, Roos BO, Ryde, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222; (b) Anderssson K, Malmqvist P-Å, Roos BO (1992) J Chem Phys 96:1218

    Google Scholar 

  67. Lange H, Loeb P, Herb T, Gleiter R (2000) J Chem Soc Perkin Trans 2:1155

    Article  Google Scholar 

  68. (a) Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255; (b) The enthalpy difference is not strictly an exact measure of bond strength: Treptow RS (1995) J Chem Educ 72:497

    Google Scholar 

  69. The activation enthalpy for the opening of cyclopentane, which should be close to the bond enthalpy assuming little enthalpy barrier to reclosing, has been estimated to be \( 344.8\ \mathrm{kJ}\ {\mathrm{mol}}^{-1} \) (\( 82.4\ \mathrm{kcal}\ {\mathrm{mol}}^{-1} \)): Sirjean B, Glaude PA, Ruiz-Lopez MF, Fournet R (2006) J Phys Chem A 110:12693

    Google Scholar 

  70. Alkorta I, Elguero J (2006) Chem Phys Lett 425:221

    Article  CAS  Google Scholar 

  71. Wang Y, Poirier RA (1998) Can J Chem 76:477

    Article  CAS  Google Scholar 

  72. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York, p 22

    Google Scholar 

  73. Lewars E (2005) J Phys Chem A 109:9827

    Article  CAS  Google Scholar 

  74. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn, Gaussian Inc., Pittsburgh, pp 228–236

    Google Scholar 

  75. Kazaryan A, Filatov M (2009) J Phys Chem A 113:11630, and references therein

    Article  CAS  Google Scholar 

  76. (a) Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360; (b) Cremer D, Filatov M, Polo V, Kraka E, Shaik S (2002) Int J Mol Sci 3:604; (c) Cremer D (2001) Mol Phys 99:1899

    Google Scholar 

  77. Bally T, Borden WT (1999) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 13. Wiley, New York, Chapter 1

    Google Scholar 

  78. (a) Saito T, Yasuda N, Kataoka Y, Nakanishi Y, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2011) J Phys Chem A 115:5625; (b) Carpenter BK, Pittner J, Veis L (2009) J Phys Chem A 113:10557; (c) Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, section 8.5.3

    Google Scholar 

  79. Lewars E (2014) Can J Chem 92:378

    Article  CAS  Google Scholar 

  80. Abe M (2013) Chem Rev 113:7011

    Article  CAS  Google Scholar 

  81. Yang KR, Jalen A, Green WH, Truhlar DG (2013) J Chem Theory Comput 9:418

    Article  CAS  Google Scholar 

  82. Ess DH, Cook TC (2012) J Phys Chem A 116:4922

    Article  CAS  Google Scholar 

  83. A polemic against the common, convenient practice of referring to relativistic mass versus rest mass: L. Okun, Physics Today, June 1989, 30. Relativistic effects like mass increase and time decrease (time dilation) at a velocity v are given by what we may call the “Einstein factor”, √(1-v 2/c 2), where c is the velocity of light. The inner electrons of a heavy atom can move at about 0.3c, so here the mass increase factor is \( 1/\surd \left(1-{v}^2/{c}^2\right)=1/\surd \left(1-{0.3}^2\right)=1/0.95=1.05 \) or 5 percent. Small but significant

    Google Scholar 

  84. Jacoby M (1988) Chem Eng News, March 23, p 48

    Google Scholar 

  85. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  86. Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH, New York

    Google Scholar 

  87. Cundari TR, Benson MT, Lutz ML, Sommerer SO (1996) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH, New York

    Google Scholar 

  88. Persina VG (1996) Chem Rev 96:1977

    Article  Google Scholar 

  89. Almlöf J, Gropen O (1996) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH, New York

    Google Scholar 

  90. (a) Balasubramanian K (1997) Relativistic effects in chemistry. Part A, theory and techniques. Part B, applications. Wiley, New York; (b) Wilson S (1998) J Am Chem Soc 120:2492

    Google Scholar 

  91. Pisani L, Clementi E (1994) J Comput Chem 15:466

    Article  CAS  Google Scholar 

  92. For a synopsis of the history behind the relativistic equations of Schrödinger and Dirac see Weinberg S (1995) The quantum theory of fields. Cambridge University Press, Cambridge, Volume I, chapter 1, and references therein. This account does not deal specifically with the Dirac-Fock equation

    Google Scholar 

  93. Malli GL, Siegert M, Turner DP (2008) Int J Quantum Chem 108:2299

    Article  CAS  Google Scholar 

  94. Bischoff FA, Klopper W (2010) J Chem Phys 132:094108

    Article  Google Scholar 

  95. Karni M, Apeloig Y, Knapp J, Schleyer PvR (2001) Chemistry of organic silicon compounds 3:1 (Patai series “The Chemistry of Functional Groups”, Ed. Z. Rappaport, Wiley, New York)

    Google Scholar 

  96. Schleyer PVR, Kaupp M, Hampel F, Bremer M, Mislow K (1992) J Am Chem Soc 114:6791

    Article  CAS  Google Scholar 

  97. Seth M, Faegri K, Schwerdfeger P (1998) Angew Chem Int Ed 37:2493

    Article  CAS  Google Scholar 

  98. Misra A, Marshall P (1998) J Phys Chem 102:9056

    Article  CAS  Google Scholar 

  99. Liao M-S, Zhang Q-E (1998) J Phys Chem A 102:10647

    Article  CAS  Google Scholar 

  100. https://bse.pnl.gov/bse/portal. Accessed 19 May 2015. Basis set exchange: a community database for computational sciences. See (a) Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045; (b) Feller D (1996) J Comp Chem 17:1571

  101. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, pp 179–180

    Google Scholar 

  102. Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry, 3rd edn, Wiley, New York, p 628

    Google Scholar 

  103. Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry, 3rd edn. Wiley, New York; chapter 23

    Google Scholar 

  104. Hoffmann R (1982) Angew Chem Int Ed 21:711

    Article  Google Scholar 

  105. Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  106. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  107. Dagani R (2001) Chem Eng News, December 3, p 37

    Google Scholar 

  108. Laszlo P, Hoffmann R (2000) Angew Chem Int Ed 39:123

    Article  CAS  Google Scholar 

  109. Comba P, Hambley TW, Martin B (2009) Molecular modelling of inorganic compounds, 3rd edn. Wiley, Weinheim

    Book  Google Scholar 

  110. Ricca A, Bauschlicher CW (1995) Theor Chim Acta 92:123

    CAS  Google Scholar 

  111. Harvey JN (2009) Abstracts of papers, 237th ACS national meeting, Salt Lake City, UT, March 22–26

    Google Scholar 

  112. Frenking G (1997) J Chem Soc, Dalton Trans, 1653

    Google Scholar 

  113. Zhao Y, Truhlar DG (2007) Acc Chem Res 41:157

    Article  Google Scholar 

  114. Tekarli S, Drummond L, Williams TG, Cundari TR, Wilson AK (2009) J Phys Chem A 113:8607

    Article  CAS  Google Scholar 

  115. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757

    Article  CAS  Google Scholar 

  116. Averkiev BB, Mantina M, Valero R, Infante I, Kovacs A, Truhlar DG, Gagliardi L (2011) Theor Chem Acc 129:657

    Article  CAS  Google Scholar 

  117. Luo S, Truhlar DG (2012) J Chem Theory Comput 8:4112

    Article  CAS  Google Scholar 

  118. Luo S, Averkiev B, Ke R, Yang X, Truhlar DG (2013) J Chem Theory Comput 10:102

    Article  Google Scholar 

  119. E.g. and references therein: (a) Cankurtaran BO, Gale JD, Ford MJ (2008) J Phys: Condens Matter 20:294208; (b) Longo RC, Gallego LJ (2006) Phys Rev B 74:193409

    Google Scholar 

  120. (a) Hoffmann R (1963) J Chem Phys 39:1397; (b) Hoffmann (1964) J Chem Phys 40:2474; (c) Hoffmann R (1964) J Chem Phys 40:2480; (d) Hoffmann R (1964) J Chem Phys 40:2745; (e) Hoffmann R (1966) Tetrahedron 22:521; (f) Hoffmann R (1966) Tetrahedron 22:539; (g) Hay PJ, Thibeault JC, Hoffmann R (1975) J Am Chem Soc 97:4884

    Google Scholar 

  121. Genin HS, Lawler KA, Hoffmann R, Hermann WA, Fischer RW, Scherer W (1995) J Am Chem Soc 117:3244

    Article  CAS  Google Scholar 

  122. Proserpio DM, Hoffmann R, Dismukes GC, Am J (1992) Chem Soc 114:4374

    Article  CAS  Google Scholar 

  123. Liu Q, Hoffmann R (1995) J Am Chem Soc 117:10108

    Google Scholar 

  124. Alemany P, Hoffmann R, Am J (1993) Chem Soc 115:8290

    Article  CAS  Google Scholar 

  125. Buda N, Flores A, Cundari TR (2005) J Coord Chem 58:575

    Article  CAS  Google Scholar 

  126. Cooney KD, Cundari TR, Hoffman NW, Pittard KA, Temple MD, Zhao Y (2003) J Am Chem Sc 125:4318

    Article  CAS  Google Scholar 

  127. Zakharian TY, Coon SR (2001) Comput Chem 25:135

    Article  CAS  Google Scholar 

  128. Goh S-K, Marynick DS (2001) J Comput Chem 22:1881

    Article  CAS  Google Scholar 

  129. Bosque R, Maseras F (2000) J Comput Chem 21:562

    Article  CAS  Google Scholar 

  130. McNamara JP, Sundararajan M, Hillier IH (2005) J Mol Graph Modell 24:128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Solvation

8.1.1 Easier Questions

  1. 1.

    Using microsolvation, roughly how many water molecules might be needed to provide one layer around CH3F ( suggestion: examine space-filling hand-held or computer-generated models)?

  2. 2.

    What physical properties of solvents have been used to parameterize them for continuum calculations?

  3. 3.

    Give an example of a reaction for which just one explicit solvent molecule might be adequate in simulating a reaction mechanism.

  4. 4.

    For continuum solvation, give an example of a molecule for which a good approximation might be (a) a spherical cavity, (b) an ellipsoidal cavity.

  5. 5.

    Why are continuum solvation methods more widely used than microsolvation methods?

8.1.2 Harder Questions

  1. 1.

    In microsolvation, should the solvent molecules be subjected to geometry optimization?

  2. 2.

    Consider the possibility of microsolvation computations with spherical, polarizable “pseudomolecules”. What might be the advantages and disadvantages of this simplified geometry?

  3. 3.

    In microsolvation, why might just one solvent layer be inadequate?

  4. 4.

    Why is parameterizing a continuum solvent model with the conventional dielectric constant possibly physically unrealistic?

  5. 5.

    Consider the possibility of parameterizing a continuum solvent model with the dipole moment.

Singlet Diradicals

8.2.1 Easier Questions

  1. 1.

    A monoradical is a doublet and a diradical can be a singlet or a triplet. How many spin states are possible for a triradical?

  2. 2.

    What does the Pauli exclusion principle suggest about the relative energies of singlet and triplet diradicals?

  3. 3.

    What is the simplest singlet diradical hydrocarbon species?

  4. 4.

    Which MOs would be appropriate for CASSCF calculations on

    1. 1.

      the ring-opening of cyclobutene to 1,3-butadiene?

    2. 2.

      the Diels-Alder reaction?

  5. 5.

    How many CI configurations are used in

    • a CASSCF(2,2) calculation?

    • a CASSCF(2,3) calculation?

8.2.2 Harder Questions

  1. 1.

    Is CASSCF size-consistent?

  2. 2.

    In one-determinant HF (i.e. SCF) theory, each MO has a unique energy (eigenvalue), but this is not so for the active MOs of a CASSCF calculation. Why?

  3. 3.

    In doubtful cases, the orbitals really needed for a CASSCF calculation can sometimes be ascertained by examining the occupation numbers of the active MOs. Look up this term for a CASSCF orbital.

  4. 4.

    Why does an occupation number (see question 3 above) close to 0 or 2 (more than ca. 1.98 and less than ca. 0.02) indicate that an orbital does not belong in the active space?

  5. 5.

    It has been said that there is no rigorous way to separate static and dynamic electron correlation. Discuss.

Heavy Atoms and Transition Metals

8.3.1 Easier Questions

  1. 1.

    Suggest a simple physical property of an atom for which a comparison of experiment with a calculated value might be used a test of whether the atom should be regarded as being “heavy” (hint: consider the energy of the valence electrons).

  2. 2.

    Suggest a simple property of a compound of element X for which a comparison of experiment with a calculated value might be used a test of whether element X should be regarded as being “heavy”.

  3. 3.

    Dirac, the discoverer of the relativistic one-electron equation, thought that relativity would be unimportant in chemistry (P. A. M. Dirac, “Quantum Mechanics of Many-Electron Systems”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1929, 123(792), 714). Why was he mistaken?

  4. 4.

    Of the first 100 elements, how many are transition metals?

  5. 5.

    Use the simple semiclassical Bohr equation for the velocity v of an electron in an atom (Chap. 4, Eq. (4.12) to calculate a value of v for \( Z=100 \) and energy level \( n=1 \):

    $$ v=\frac{Z{e}^2}{2{\varepsilon}_0nh} $$
    (4.12)
    $$ e=1.602\times {10}^{-19}\mathrm{C},\;{\varepsilon}_0=8.854\times {10}^{-12\;}{\mathrm{C}}^2{\mathrm{N}}^{-1}{\mathrm{m}}^{-2},\;h=6.626\times {10}^{-34}\;\mathrm{J}.\mathrm{s} $$

    What fraction of the speed of light \( c=3.0\times {10}^8\kern0.24em {\mathrm{ms}}^{-1} \)) is this value of v?

    Using the “Einstein factor” \( \surd \left(1-{v}^2/{c}^2\right) \), calculate the mass increase factor that this corresponds to.

8.3.2 Harder Questions

  1. 1.

    Is the result of the calculation in question 5 above trustworthy? Why or why not?

  2. 2.

    Should relativistic effects be stronger for d or for f electrons?

  3. 3.

    Why are the transition elements all metals?

  4. 4.

    The simple crystal field analysis of the effect of ligands on transition metal d-electron energies accords well with the “deeper” molecular orbital analysis (see e.g [106]). In what way(s), however, is the crystal field method unrealistic?

  5. 5.

    Suggest reasons why parameterizing molecular mechanics and PM3-type programs for transition metals presents special problems compared with parameterizing for standard organic compounds.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewars, E.G. (2016). Some “Special” Topics: (Section 8.1) Solvation, (Section 8.2) Singlet Diradicals, (Section 8.3) A Note on Heavy Atoms and Transition Metals. In: Computational Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-30916-3_8

Download citation

Publish with us

Policies and ethics