Skip to main content

Microgrid State Estimation Using the IoT with 5G Technology

  • Chapter
  • First Online:
Internet of Things (IoT) in 5G Mobile Technologies

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 8))

Abstract

The internet of things (IoT) has been a prevalent research topic in recent years in both academia and industry. The main idea of this framework is the integration of physical objects into a global information network. The vision of the IoT is to integrate and connect anything at any time and any place. For this reason, it is being applied in various areas such as power system monitoring, environment monitoring, network control system, smart health care, military, smart cities management and industry revolution. To achieve the goals, the fifth generation (5G) technology will be the potential infrastructure that will assist the visions of the IoT. Starting with the visions and requirements of the IoT with 5G networks, this chapter proposes a distributed approach for microgrid state estimation. After modelling the microgrid, it is linearized around the operating point, so that the proposed distributed state estimation using the IoT with 5G networks can be applied. Moreover, we propose a wireless sensor network based communication network to sense, transmit and estimate the microgrid states. At the end, the simulation results show that the proposed method is able to estimate the system state properly using the IoT with 5G networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kayastha, N., Niyato, D., Hossain, E., Han, Z.: Smart grid sensor data collection, communication, and networking: a tutorial. Wirel. Commun. Mob. Comput. (2012)

    Google Scholar 

  2. Ma, R., Chen, H.H., Huang, Y.R., Meng, W.: Smart grid communication: its challenges and opportunities. IEEE Trans. Smart Grid 4(1), 36–46 (2013)

    Article  Google Scholar 

  3. Lo, C.H., Ansari, N.: Decentralized controls and communications for autonomous distribution networks in smart grid. IEEE Trans. Smart Grid 4(1), 66–77 (2013)

    Article  Google Scholar 

  4. Rana, M.M., Li, L.: An overview of distributed microgrid state estimation and control for smart grids. Sensors 15(2), 4302–4325 (2015)

    Article  Google Scholar 

  5. Rana, M., Li, L., et al.: Distributed generation monitoring of smart grid using accuracy dependent kalman filter with communication systems. In: Proceedings of the International Conference on Information Technology-New Generations, pp. 496–500. IEEE (2015)

    Google Scholar 

  6. Guo, J., Zhang, H., Sun, Y., Bie, R.: Square-root unscented Kalman filtering-based localization and tracking in the internet of things. Pers. Ubiquit. Comput. 18(4), 987–996 (2014)

    Article  Google Scholar 

  7. Rana, M., Li, L., et al.: Kalman filter based microgrid state estimation using the internet of things communication network. In: Proceedings of the International Conference on Information Technology-New Generations, pp. 501–505. IEEE (2015)

    Google Scholar 

  8. Nguyen, K.-L., Won, D.-J., Ahn, S.-J., Chung, I.-Y.: Power sharing method for a grid connected microgrid with multiple distributed generators. J. Electr. Eng. Technol. 7(4), 459–467 (2012)

    Google Scholar 

  9. Zhang, X., Pei, W., Deng, W., Du, Y., Qi, Z., Dong, Z.: Emerging smart grid technology for mitigating global warming. Int. J. Energy Res. (2015)

    Google Scholar 

  10. Mao, R., Li, H.: Nobody but you: sensor selection for voltage regulation in smart grid (2011). arXiv preprint arXiv:1103.5441

  11. Huang, J., Gupta, V., Huang, Y.-F.: Electric grid state estimators for distribution systems with microgrids. In: Proceedings of the 46th Annual Conference on Information Sciences and Systems, pp. 1–6. IEEE (2012)

    Google Scholar 

  12. Rana, M., Li, L., et al.: Controlling the distributed energy resources using smart grid communications. In: Proceedings of the International Conference on Information Technology-New Generations, pp. 490–495. IEEE (2015)

    Google Scholar 

  13. Rigatos, G., Siano, P., Zervos, N.: A distributed state estimation approach to condition monitoring of nonlinear electric power systems. Asian J. Control 15(3), 849–860 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lo, C.-H., Ansari, N.: Decentralized controls and communications for autonomous distribution networks in smart grid. IEEE Trans. Smart Grid 4(1), 66–77 (2013)

    Article  Google Scholar 

  15. Xie, L., Choi, D.-H., Kar, S., Poor, H.V.: Fully distributed state estimation for wide-area monitoring systems. IEEE Trans. Smart Grid 3(3), 1154–1169 (2012)

    Article  Google Scholar 

  16. Zonouz, S., Sanders, W.H.: A Kalman based coordination for hierarchical state estimation: agorithm and analysis. In: Proceedings of the 41st Annual Hawaii International Conference on System Sciences, pp. 187–187. IEEE (2008)

    Google Scholar 

  17. Van Cutsem, T., Horward, L., Ribbens-Pavella, M.: A two-level static state estimator for electric power systems. IEEE Trans. Power Appar. Syst. 8, 3722–3732 (1981)

    Article  Google Scholar 

  18. Yang, T., Sun, H., Bose, A.: Transition to a two-level linear state estimator-part I: architecture. IEEE Trans. Power Syst. 26(1), 46–53 (2011)

    Article  Google Scholar 

  19. Yang, T., Sun, H., Bose, A.: Transition to a two-level linear state estimator-part II: algorithm. IEEE Trans. Power Syst. 26(1), 54–62 (2011)

    Article  Google Scholar 

  20. Gómez-Expósito, A., De La Villa Jaén, A.: Two-level state estimation with local measurement pre-processing. IEEE Trans. Power Syst. 24(2), 676–684 (2009)

    Article  Google Scholar 

  21. Gómez-Expósito, A., Abur, A., De La Villa Jaén, A., Gómez-Quiles, C.: A multilevel state estimation paradigm for smart grids. Proc. IEEE 99(6), 952–976 (2011)

    Article  Google Scholar 

  22. Korres, G.N.: A distributed multiarea state estimation. IEEE Trans. Power Syst. 26(1), 73–84 (2011)

    Article  Google Scholar 

  23. Hashemipour, H.R., Roy, S., Laub, A.J.: Decentralized structures for parallel Kalman filtering. IEEE Trans. Autom. Control 33(1), 88–94 (1988)

    Article  MATH  Google Scholar 

  24. Singh, A.K., Pal, B.C.: Decentralized dynamic state estimation in power systems using unscented transformation. IEEE Trans. Power Syst. 29(2), 794–804 (2014)

    Article  MathSciNet  Google Scholar 

  25. Alriksson, P., Rantzer, A.: Distributed Kalman filtering using weighted averaging. In: Proceedings of the International Symposium on Mathematical Theory of Networks and Systems, pp. 2445–2450 (2006)

    Google Scholar 

  26. Ma, X., Djouadi, S.M., Li, H.: State estimation over a semi-markov model based cognitive radio system. IEEE Trans. Wirel. Commun. 11(7), 2391–2401 (2012)

    Article  Google Scholar 

  27. Rana, M.M.: An adaptive channel estimation technique for OFDM based cognitive radio systems. In: Proceedings of the International Conference Computer and Information Technology, pp. 315–320. IEEE (2011)

    Google Scholar 

  28. Rana, M.M.: Power control algorithm for cognitive radio systems. In: Proceedings of the International Conference on Computer and Information Technology, pp. 6–11. IEEE (2011)

    Google Scholar 

  29. Mavromoustakis, C.X., Bourdena, A., Mastorakis, G., Pallis, E., Kormentzas, G.: An energy-aware scheme for efficient spectrum utilization in a 5G mobile cognitive radio network architecture. Telecommun. Syst. 59(1), 63–75 (2014)

    Article  Google Scholar 

  30. Mavromoustakis, C.X., Mastorakis, G., Bourdena, A., Pallis, E., Kormentzas, G., Dimitriou, C.D.: Joint energy and delay-aware scheme for 5G mobile cognitive radio networks. In: Proceddings of the Global Communications Conference, pp. 2624–2630. IEEE (2014)

    Google Scholar 

  31. Rana, M.M., Li, L.: Microgrid state estimation and control for smart grid and the internet of things communication network. Electron. Lett. 51(2), 149–151 (2015)

    Article  Google Scholar 

  32. Rana, M., Li, L., Su, S.: Distributed state estimation using RSC coded smart grid communications. IEEE Access 3(1), 1–10 (2015)

    Google Scholar 

  33. Julier, S.J., Uhlmann, J.K: General decentralized data fusion with covariance intersection (CI) (2001)

    Google Scholar 

  34. Hlinka, O., Sluciak, O., Hlawatsch, F., Rupp, M.: Distributed data fusion using iterative covariance intersection. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, pp. 1861–1865. IEEE (2014)

    Google Scholar 

  35. Vista IV, F.P., Lee, D.-J., Chong, K.T.: Design of an EKF-CI based sensor fusion for robust heading estimation of marine vehicle. Int. J. Precis. Eng. Manuf. 16(2), 403–407 (2015)

    Article  Google Scholar 

  36. Lopes, C.G., Sayed, A.H.: Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)

    Article  MathSciNet  Google Scholar 

  37. Xu, S., de Lamare, R.C., Poor, H.V.: Dynamic topology adaptation for distributed estimation in smart grids. In: Proceedings of the International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 420–423. IEEE (2013)

    Google Scholar 

  38. Yun, M., Yuxin, B.: Research on the architecture and key technology of internet of things (IoT) applied on smart grid. In: Proceedings of the International Conference on Advances in Energy Engineering, pp. 69–72. IEEE (2010)

    Google Scholar 

  39. Chi, Q., Yan, H., Zhang, C., Pang, Z., Da Xu, L.: A reconfigurable smart sensor interface for industrial WSN in IoT environment. IEEE Trans. Ind. Inf. 10(2), 1417–1425 (2014)

    Article  Google Scholar 

  40. Bojanova, I., Hurlburt, G., Voas, J.: Imagineering an internet of anything. Comput. 6, 72–77 (2014)

    Article  Google Scholar 

  41. Huang, J., Meng, Y., Gong, X., Liu, Y., Duan, Q.: A novel deployment scheme for green internet of things. Internet Things J. 1(2), 196–205 (2014)

    Article  Google Scholar 

  42. Qiao, J., Shen, X., Mark, J., Shen, Q., He, Y., Lei, L.: Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Commun. Mag. 53(1), 209–215 (2015)

    Article  Google Scholar 

  43. Skubic, B., Bottari, G., Rostami, A., Cavaliere, F., Öhlén, P.: Rethinking optical transport to pave the way for 5G and the networked society. J. Lightwave Technol. 33(5), 1084–1091 (2015)

    Article  Google Scholar 

  44. Rana, M.M., Kim, J.: Fundamentals of Channel Estimations for Mobile Communications-Existing and New Techniques of a LTE SC-FDMA System. LAMBERT Academic Publishing, Germany (2012)

    Google Scholar 

  45. Rana, M.M., Kim, J., Cho, W.-K.: LMS based channel estimation of LTE uplink using variable step size and phase information. Radioengineering 19(4), 678–688 (2010)

    Google Scholar 

  46. Du, J., Qian, M.: Research and application on LTE technology in smart grids. In: Proceedings of the Communications and Networking in China, pp. 76–80. IEEE (2012)

    Google Scholar 

  47. Jain, S., Kumar, N., Paventhan, A., Chinnaiyan, V.K., Arnachalam, V., Pradish, M.: Survey on smart grid technologies-smart metering, IoT and EMS. In: Proceedings of the IEEE Students Conference on Electrical, Electronics and Computer Science, pp. 1–6. IEEE (2014)

    Google Scholar 

  48. Bera, S., Misra, S., Rodrigues, J.J.: Cloud computing applications for smart grid: a survey. IEEE Trans. Parallel Distrib. Syst. 26(5), 1477–1494 (2015)

    Article  Google Scholar 

  49. Chih-Lin, I., Han, S., Chen, Y., Li, G.: Trillions of nodes for 5G!?. In: Proceedings of the International Conference on Communications in China, pp. 246–250. IEEE (2014)

    Google Scholar 

  50. Talwar, S., Choudhury, D., Dimou, K., Aryafar, E., Bangerter, B., Stewart, K.: Enabling technologies and architectures for 5G wireless. In: Microwave Symposium, pp. 1–4. IEEE (2014)

    Google Scholar 

  51. Soldani, D., Manzalini, A.: Horizon 2020 and beyond: on the 5G operating system for a true digital society. IEEE Veh. Technol. Mag. 10(1), 32–42 (2015)

    Article  Google Scholar 

  52. Ding, Z., Lee, W.-J., Wang, J.: Stochastic resource planning strategy to improve the efficiency of microgrid operation. In: Industry Applications Society Annual Meeting, pp. 1–8. IEEE (2014)

    Google Scholar 

  53. Li, F., Qiao, W., Sun, H., Wan, H., Wang, J., Xia, Y., Xu, Z., Zhang, P.: Smart transmission grid: vision and framework. IEEE Trans. Smart Grid 1(2), 168–177 (2010)

    Article  Google Scholar 

  54. Soma, L.W., Depuru, S.S.R., Devabhaktuni, V.: Smart meters for power grid: challenges, issues, advantages and status. Renew. Sustain. Energy Rev. 15(6), 2736–2742 (2011)

    Article  Google Scholar 

  55. Yan, Y., Qian, Y., Sharif, H., Tipper, D.: A survey on smart grid communication infrastructures: motivations, requirements and challenges. IEEE Commun. Surv. Tutor. 15(1), 5–20 (2013)

    Article  Google Scholar 

  56. Caro, E., Conejo, A.J., Manguez, R.: Decentralized state estimation and bad measurement identification: an efficient Lagrangian relaxation approach. IEEE Trans. Power Syst. 33(4), 1331–1336 (1998)

    Google Scholar 

  57. Yu, L., Jiang, T., Cao, Y., Qi, Q.: Carbon-aware energy cost minimization for distributed internet data centers in smart microgrids. IEEE Internet Things J. 1(3), 255–264 (2014)

    Article  Google Scholar 

  58. Akhmatov, V.: Induction Generators for Wind Power. Multi-Science Publishing Company Ltd, Denmark (2007)

    Google Scholar 

  59. Wang, Y., Lu, Z., Min, Y., Wang, Z.: Small signal analysis of microgrid with multiple micro sources based on reduced order model in islanding operation. In: Power and Energy Society General Meeting, pp. 1–9. IEEE (2011)

    Google Scholar 

  60. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, New Jersey (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Masud Rana .

Editor information

Editors and Affiliations

Appendix

Appendix

The terms used in (7) are given by [59]:

$$\begin{aligned} \mathbf f _1 =&\frac{1}{{X'_s}^2 + X_{tl} X'_s L_{R_{tl}}} \begin{bmatrix} 0&X'_s + X_{tl} L_{R_{tl}}\\ - X'_s&X_2 L_{X_{tl}} \end{bmatrix}. \end{aligned}$$
(19)
$$\begin{aligned} \mathbf f _2 =&\frac{sec \delta _{20}}{{X'_s}^2 + X_{tl} X'_s L_{R_{tl}}} \begin{bmatrix} 0 \\ X'_s \end{bmatrix}. \end{aligned}$$
(20)
$$\begin{aligned} \mathbf f _3 =&\begin{bmatrix} -\frac{X_s + X_{tl} L_{R_{tl}} }{T'_0(X'_s + X_{tl} L_{R_{tl}})}&1- \omega _{go} + \frac{(X_s - X'_s)X_{tl} L_{X_{tl}}}{T'_0 X'_s(X'_s + X_{tl}L_{R_{tl}})} \\ \omega _{go} -1&-\frac{X_s}{T'_0 X'_s} \end{bmatrix}. \end{aligned}$$
(21)
$$\begin{aligned} \mathbf f _4 =&\frac{(X'_s-X_s) sec \delta _{20}}{{T'_0(X'_s + X_{tl} L_{R_{tl}})}} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.\end{aligned}$$
(22)
$$\begin{aligned} \mathbf f _5 =&\begin{bmatrix} -u'_{qo} \\ u'_{do} \end{bmatrix}. \end{aligned}$$
(23)
$$\begin{aligned} \mathbf f _6 =&-[u'_{do} ~ ~ u'_{qo} ] \mathbf f _1 - [i^{tl}_{ds0} ~ ~ ~ ~ i^{tl}_{qso} ] \mathbf f _3. \end{aligned}$$
(24)
$$\begin{aligned} \mathbf f _7 =&-[u'_{do} ~ ~ u'_{qo} ] \mathbf f _2 - [i^{tl}_{dso} ~ ~ ~ ~ i^{tl}_{qs0} ] \mathbf f _4. \end{aligned}$$
(25)
$$\begin{aligned} \mathbf f _8 =&- [i^{tl}_{dso} ~ ~ ~ ~ i^{tl}_{qso} ] \mathbf f _5. \end{aligned}$$
(26)
$$\begin{aligned} L_{R_{tl}}&= 1+ \frac{R_{tl}}{X_{tl}} tan \delta _{20}. \end{aligned}$$
(27)
$$\begin{aligned} L_{X_{tl}}&= \frac{R_{tl}}{X_{tl}} - tan \delta _{20}. \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rana, M.M., Li, L., Su, S. (2016). Microgrid State Estimation Using the IoT with 5G Technology. In: Mavromoustakis, C., Mastorakis, G., Batalla, J. (eds) Internet of Things (IoT) in 5G Mobile Technologies. Modeling and Optimization in Science and Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-30913-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30913-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30911-8

  • Online ISBN: 978-3-319-30913-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics