Skip to main content

Role Coordination in Large-Scale and Highly-Dense Internet-of-Things

  • Chapter
  • First Online:
Internet of Things (IoT) in 5G Mobile Technologies

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 8))

  • 5068 Accesses

Abstract

Large-Scale Highly-Dense Networks have been deployed in different application domains of Internet-of-Things for accurate event-detection and monitoring. Due to the high density and large scale, the nodes in these networks must perform some essential communication roles, namely sensing, relaying, data-fusion, and data-control (aggregation and replication). Since the energy consumption and the communication reliability is one of the major challenges in Large-Scale Highly-Dense Networks, the communication roles should be coordinated in order to efficiently use the energy resources and to meet a satisfactory level of communication reliability. In this chapter, we propose an on-demand and fully distributed framework for role coordination that is designed to detect events with different levels of criticality, adapting the data-aggregation and data-replication according to the urgency level of the detected event. Besides the criticality level, the proposed role coordination also takes into account the network information such as energy resources, memory, and link quality. This chapter also presents the related works and shows a qualitative comparison between the proposed framework and the most comprehensive related role coordination frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asadi, A., Sciancalepore, V., Mancuso, V.: On the efficient utilization of radio resources in extremely dense wireless networks. IEEE Commun. Mag. 53(1), 126–132 (2015)

    Article  Google Scholar 

  2. Lu, R., Li, X., Liang, X., Shen, X., Lin, X.: Grs: the green, reliability, and security of emerging machine to machine communications. IEEE Commun. Mag. 49(4), 28–35 (2011)

    Article  Google Scholar 

  3. Xu, X., Luo, J., Zhang, Q.: Delay tolerant event collection in sensor networks with mobile sink. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9. IEEE (2010)

    Google Scholar 

  4. Nakamura, E.F., Ramos, H.S., Villas, L.A., de Oliveira, H.A., de Aquino, A.L., Loureiro, A.A.: A reactive role assignment for data routing in event-based wireless sensor networks. Comput. Netw. 53(12), 1980–1996 (2009)

    Article  MATH  Google Scholar 

  5. Villas, L.A., Boukerche, A., Ramos, H.S., de Oliveira, H.A., de Araujo, R.B., Loureiro, A.A.F.: Drina: a lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Trans. Comput. 62(4), 676–689 (2013)

    Article  MathSciNet  Google Scholar 

  6. Villas, L.A., Boukerche, A., De Oliveira, H.A., De Araujo, R.B., Loureiro, A.A.: A spatial correlation aware algorithm to perform efficient data collection in wireless sensor networks. Ad Hoc Netw. 12, 69–85 (2014)

    Article  Google Scholar 

  7. Draves, R., Padhye, J., Zill, B.: Comparison of routing metrics for static multi-hop wireless networks. ACM SIGCOMM Comput. Commun. Rev. 34(4), 133–144 (2004)

    Article  Google Scholar 

  8. Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 24(3), 659–672 (2006)

    Article  Google Scholar 

  9. Chou, C.T., Yang, J., Wang, D.: Cooperative mac protocol with automatic relay selection in distributed wireless networks. In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops’ 07, pp. 526–531. IEEE (2007)

    Google Scholar 

  10. Jakllari, G., Krishnamurthy, S.V., Faloutsos, M., Krishnamurthy, P.V., Ercetin, O.: A cross-layer framework for exploiting virtual miso links in mobile ad hoc networks. IEEE Trans. Mob. Comput. 6(6), 579–594 (2007)

    Article  Google Scholar 

  11. Chen, M., Kwon, T., Mao, S., Yuan, Y.: Reliable and energy-efficient routing protocol in dense wireless sensor networks. Int. J. Sens. Netw. 4(1), 104–117 (2008)

    Article  Google Scholar 

  12. Tan, H.Ö., Körpeolu, I.: Power efficient data gathering and aggregation in wireless sensor networks. ACM Sigmod Rec. 32(4), 66–71 (2003)

    Article  Google Scholar 

  13. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wireless Commun. 1(4), 660–670 (2002)

    Article  Google Scholar 

  14. Lindsey, S., Raghavendra, C.: Pegasis: Power-efficient gathering in sensor information systems. In: Proceedings of IEEE Aerospace Conference 2002, vol. 3, pp. 3–1125. IEEE (2002)

    Google Scholar 

  15. Hussain, S., Islam, O.: An energy efficient spanning tree based multi-hop routing in wireless sensor networks. In: IEEE Wireless Communications and Networking Conference, WCNC 2007, pp. 4383–4388. IEEE (2007)

    Google Scholar 

  16. Lin, H.C., Li, F.J., Wang, K.Y.: Constructing maximum-lifetime data gathering trees in sensor networks with data aggregation. In: 2010 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2010)

    Google Scholar 

  17. Tan, H.O., Korpeoglu, I., Stojmenovic, I.: Computing localized power-efficient data aggregation trees for sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(3), 489–500 (2011)

    Article  Google Scholar 

  18. Luo, D., Zhu, X., Wu, X., Chen, G.: Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks. In: 2011 Proceedings of IEEE INFOCOM, pp. 1566–1574. IEEE (2011)

    Google Scholar 

  19. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, pp. 252–259. ACM (2005)

    Google Scholar 

  20. Takahashi, A., Nishiyama, H., Kato, N., Nakahira, K., Sugiyama, T.: Replication control for ensuring reliability of convergecast message delivery in infrastructure-aided dtns. IEEE Trans. Veh. Technol. 63(7), 3223–3231 (2014)

    Article  Google Scholar 

  21. Nishiyama, H., Takahashi, A., Kato, N., Nakahira, K., Sugiyama, T.: Dynamic replication and forwarding control based on node surroundings in cooperative delay-tolerant networks. IEEE Trans. Parallel Distrib. Syst. (2014)

    Google Scholar 

  22. Thompson, N., Nelson, S.C., Bakht, M., Abdelzaher, T., Kravets, R.: Retiring replicants: congestion control for intermittently-connected networks. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9. IEEE (2010)

    Google Scholar 

  23. Quek, T.Q., Dardari, D., Win, M.Z.: Energy efficiency of dense wireless sensor networks: to cooperate or not to cooperate. IEEE J. Sel. Areas Commun. 25(2), 459–470 (2007)

    Article  Google Scholar 

  24. Luo, X., Dong, M., Huang, Y.: On distributed fault-tolerant detection in wireless sensor networks. IEEE Trans. Comput. 55(1), 58–70 (2006)

    Article  Google Scholar 

  25. Chaudhari, S., Lunden, J., Koivunen, V., Poor, H.V.: Cooperative sensing with imperfect reporting channels: hard decisions or soft decisions? IEEE Trans. Signal Process. 60(1), 18–28 (2012)

    Article  MathSciNet  Google Scholar 

  26. Sheltami, T.R.: An enhanced distributed scheme for wsns. Mob. Inf. Syst. 2015 (2015)

    Google Scholar 

  27. Viswanathan, R., Varshney, P.K.: Distributed detection with multiple sensors i. fundamentals. Proc. IEEE 85(1), 54–63 (1997)

    Article  Google Scholar 

  28. Visotsky, E., Kuffner, S., Peterson, R.: On collaborative detection of tv transmissions in support of dynamic spectrum sharing. In: 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005, pp. 338–345. IEEE (2005)

    Google Scholar 

  29. Cattivelli, F.S., Sayed, A.H.: Distributed detection over adaptive networks using diffusion adaptation. IEEE Trans. Signal Process. 59(5), 1917–1932 (2011)

    Article  MathSciNet  Google Scholar 

  30. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J., Alexander, R.: RPL: IPv6 Routing protocol for low-power and lossy networks. RFC 6550 (Proposed Standard) (Mar 2012)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by MITP-TB/C S/0026/2013 SusCity: Urban data driven models for creative and resourceful urban transitions; and through the Ciencia sem Fronteiras (Brazil) Program/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Riker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riker, A., Curado, M., Monteiro, E. (2016). Role Coordination in Large-Scale and Highly-Dense Internet-of-Things. In: Mavromoustakis, C., Mastorakis, G., Batalla, J. (eds) Internet of Things (IoT) in 5G Mobile Technologies. Modeling and Optimization in Science and Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-30913-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30913-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30911-8

  • Online ISBN: 978-3-319-30913-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics