Skip to main content

Millimetre Wave Communication for 5G IoT Applications

  • Chapter
  • First Online:
Book cover Internet of Things (IoT) in 5G Mobile Technologies

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 8))

Abstract

Mobile communications industry is going through an era of very rapid advancement as multiple major innovations are about to take place. Fifth generation (5G) of mobile communication systems is developed to become an all-encompassing solution to fundamentally every broadband wireless communication need of the next decade. Since both the communication and electronic technologies are matured enough, machine-to-machine communication is also about to take off, placing a completely new set of demands on the wireless networks. As the spectrum is already limited in the conventional sub 6 GHz bands, in order to generate efficient applications for the Internet of Things (IoT) within the 5G systems, utilization of new frequency bands are needed. Comprising, both licensed and unlicensed, ample bandwidth, millimetre wave (mm-wave) band is the primary candidate for adoption. In line with these, in this chapter mm-wave band is analyzed for use in 5G IoT implementations. Subsequent to introduction, a brief description of mm-wave band channel characteristics is provided. Then, enabling physical layer techniques of modulation, error control coding and multiple input multiple output are reviewed from the 5G mm-wave point of view. Following conclusions, the chapter ends with open research issues and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods. ITU-R Recommendations, P Series Fasicle, ITU, Geneva, Switzerland (2005)

    Google Scholar 

  2. IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension. IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), pp. c1–187 (2009). doi:10.1109/IEEESTD.2009.5284444

  3. IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), pp. 1–628 (2012). doi:10.1109/IEEESTD.2012.6392842

  4. Recommendation ITU-R P.676-9: Attenuation by atmospheric gases. ITU-R Recommendations, P Series Fasicle, ITU, Geneva, Switzerland (2012)

    Google Scholar 

  5. Recommendation ITU-R P.835-5: Reference standard atmospheres. ITU-R Recommendations, P Series Fasicle, ITU, Geneva, Switzerland (2012)

    Google Scholar 

  6. Cisco Visual Networking Index: Global mobile data traffic forecast update, 2014–2019. Report, Cisco Systems, Inc. (2015)

    Google Scholar 

  7. Akyildiz, I.F., Gutierrez-Estevez, D.M., Reyes, E.C.: The evolution to 4G cellular systems: LTE-advanced. Phys. Commun. 3(4), 217–244 (2010). doi:10.1016/j.phycom.2010.08.001

    Article  Google Scholar 

  8. Andrews, J.G., Buzzi, S., Wan, C., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014). doi:10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  9. Andrews, J.G., Wan, C., Heath, R.W.: Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Wirel. Commun. 14(6), 95–104 (2007). doi:10.1109/MWC.2007.4407232

    Article  Google Scholar 

  10. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). doi:10.1016/j.comnet.2010.05.010

    Article  MATH  Google Scholar 

  11. Banelli, P., Buzzi, S., Colavolpe, G., Modenini, A., Rusek, F., Ugolini, A.: Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Process. Mag. 31(6), 80–93 (2014). doi:10.1109/MSP.2014.2337391

    Article  Google Scholar 

  12. Benvenuto, N., Dinis, R., Falconer, D., Tomasin, S.: Single carrier modulation with nonlinear frequency domain equalization: an idea whose time has come—again. Proc. IEEE 98(1), 69–96 (2010). doi:10.1109/JPROC.2009.2031562

    Article  Google Scholar 

  13. Benvenuto, N., Tomasin, S.: On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter. IEEE Trans. Commun. 50(6), 947–955 (2002). doi:10.1109/TCOMM.2002.1010614

    Article  Google Scholar 

  14. Chandrasekhar, V., Andrews, J.G., Gatherer, A.: Femtocell networks: a survey. IEEE Commun. Mag. 46(9), 59–67 (2008). doi:10.1109/MCOM.2008.4623708

    Article  Google Scholar 

  15. Chin, W.H., Zhong, F., Haines, R.: Emerging technologies and research challenges for 5G wireless networks. IEEE Wirel. Commun. 21(2), 106–112 (2014). doi:10.1109/MWC.2014.6812298

    Article  Google Scholar 

  16. Costello Jr., D.J., Pusane, A.E., Bates, S., Zigangirov, K.S.: A comparison between LDPC block and convolutional codes. In: Proceedings of Information Theory and Applications Workshop

    Google Scholar 

  17. Czylwik, A.: Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization. In: IEEE 47th Vehicular Technology Conference, vol. 2, pp. 865–869 (1997). doi:10.1109/VETEC.1997.600452

  18. Farhang, A., Marchetti, N., Figueiredo, F., Miranda, J.P.: Massive MIMO and waveform design for 5th generation wireless communication systems. In: 1st International Conference on 5G for Ubiquitous Connectivity (5GU), pp. 70–75 (2014). doi:10.4108/icst.5gu.2014.258195

  19. Farhang-Boroujeny, B.: OFDM versus filter bank multicarrier. IEEE Signal Process. Mag. 28(3), 92–112 (2011). doi:10.1109/MSP.2011.940267

    Article  Google Scholar 

  20. Fettweis, G.P.: The tactile Internet: applications and challenges. IEEE Veh. Technol. Mag. 9(1), 64–70 (2014). doi:10.1109/MVT.2013.2295069

    Article  Google Scholar 

  21. Friis, H.T.: A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)

    Article  Google Scholar 

  22. Fusco, T., Petrella, A., Tanda, M.: Sensitivity of multi-user filter-bank multicarrier systems to synchronization errors. In: 3rd International Symposium on Communications, Control and Signal Processing, SCCSP 2008, pp. 393–398 (2008). doi:10.1109/ISCCSP.2008.4537257

  23. Haifan, Y., Gesbert, D., Filippou, M., Yingzhuang, L.: A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J. Sel. Areas Commun. 31(2), 264–273 (2013). doi:10.1109/JSAC.2013.130214

    Article  Google Scholar 

  24. Jacob, M., Priebe, S., Dickhoff, R., Kleine-Ostmann, T., Schrader, T., Kurner, T.: Diffraction in mm and sub-mm wave indoor propagation channels. IEEE Trans. Microw. Theory Tech. 60(3), 833–844 (2012). doi:10.1109/TMTT.2011.2178859

    Article  Google Scholar 

  25. Jansen, C., Priebe, S., Moller, C., Jacob, M., Dierke, H., Koch, M., Kurner, T.: Diffuse scattering from rough surfaces in THz communication channels. IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011). doi:10.1109/TTHZ.2011.2153610

    Article  Google Scholar 

  26. Jianfei, L., Du, Y., Liu, Y.: Comparison of spectral efficiency for OFDM and SC-FDE under IEEE 802.16 scenario. In: Proceedings of 11th IEEE Symposium on Computers and Communications, ISCC ’06, pp. 467–471 (2006). doi:10.1109/ISCC.2006.52

  27. Karjalainen, J., Nekovee, M., Benn, H., Kim, W., Park, J., Sungsoo, H.: Challenges and opportunities of mm-wave communication in 5G networks. In: 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp. 372–376 (2014)

    Google Scholar 

  28. Lamb, J.W.: Miscellaneous data on materials for millimetre and submillimetre optics. Int. J. Infrared Millimeter Waves 17(12), 1997–2034 (1996). doi:10.1007/BF02069487

    Article  Google Scholar 

  29. Larsson, E., Edfors, O., Tufvesson, F., Marzetta, T.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014). doi:10.1109/MCOM.2014.6736761

    Article  Google Scholar 

  30. Marinkovic, M., Piz, M., Chang-Soon, C., Panic, G., Ehrig, M., Grass, E.: Performance evaluation of channel coding for Gbps 60-GHz OFDM-based wireless communications. In: IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 994–998 (2010). doi:10.1109/PIMRC.2010.5671892

  31. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wireless Commun. 9(11), 3590–3600 (2010). doi:10.1109/TWC.2010.092810.091092

    Article  Google Scholar 

  32. Muller, R.R., Cottatellucci, L., Vehkapera, M.: Blind pilot decontamination. IEEE J. Sel. Top. Sign. Proces. 8(5), 773–786 (2014). doi:10.1109/JSTSP.2014.2310053

    Article  Google Scholar 

  33. Myung, H.G., Junsung, L., Goodman, D.: Peak-to-average power ratio of single carrier fdma signals with pulse shaping. In: IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1–5 (2006). doi:10.1109/PIMRC.2006.254407

  34. Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013). doi:10.1109/TCOMM.2013.020413.110848

    Article  Google Scholar 

  35. Ngo, H.Q., Marzetta, T.L., Larsson, E.G.: Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3464–3467 (2011). doi:10.1109/ICASSP.2011.5947131

  36. Ortiz, S.: The wireless industry begins to embrace femtocells. Computer 41(7), 14–17 (2008). doi:10.1109/MC.2008.238

    Article  Google Scholar 

  37. Piesiewicz, R., Jansen, C., Wietzke, S., Mittleman, D., Koch, M., Kurner, T.: Properties of building and plastic materials in the THz range. Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007). doi:10.1007/s10762-007-9217-9

    Article  Google Scholar 

  38. Popovski, P., Stefanovic, C., Yomo, H., Pratas, N., Schaich, F., Santos, A., Braun, V., Gozalvez-Serrano, D., Strom, E., Svensson, T., Sun, W., Weitkemper, P., Benjebbour, A., Saito, Y., Kishiyama, Y., He, N., Lin, H., Siaud, I., Siohan, P., Schellmann, M., Zhao, Z., Schubert, M., Lahetkangas, E., Vihriala, J., Pajukoski, K., Ascheid, G., Heinen, S., Ashok, A., Ishaque, A., Luecken, V., Dekorsy, A., Bockelmann, C., Quint, F., Rajatheva, N., Pirinen, P., Baghdadi, A., Guilloud, F.: Requirement analysis and design approaches for 5G air interface. Report (2013). https://www.metis2020.com/wp-content/uploads/deliverables/METIS_D2.1_v1.pdf

  39. Priyanto, B.E., Codina, H., Rene, S., Sorensen, T.B., Mogensen, P.: Initial performance evaluation of DFT-spread OFDM based SC-FDMA for UTRA LTE uplink. In: IEEE 65th Vehicular Technology Conference, VTC2007-Spring, pp. 3175–3179 (2007). doi:10.1109/VETECS.2007.650

  40. Rappaport, T.S., Gutierrez, F., Ben-Dor, E., Murdock, J.N., Yijun, Q., Tamir, J.I.: Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 61(4), 1850–1859 (2013). doi:10.1109/TAP.2012.2235056

    Article  Google Scholar 

  41. Rappaport, T.S., Heath, R.W., Daniels, R.C., Murdock, J.N.: Millimeter wave wireless communications. Prentice Hall (2014)

    Google Scholar 

  42. Schaich, F., Wild, T.: Waveform contenders for 5G—OFDM vs. FBMC vs. UFMC. In: 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 457–460 (2014). doi:10.1109/ISCCSP.2014.6877912

  43. Schaich, F., Wild, T., Yejian, C.: Waveform contenders for 5G—suitability for short packet and low latency transmissions. In: IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2014). doi:10.1109/VTCSpring.2014.7023145

  44. Songlin, S., Yanhong, J., Yamao, Y.: Overlay cognitive radio OFDM system for 4G cellular networks. IEEE Trans. Wireless Commun. 20(2), 68–73 (2013). doi:10.1109/MWC.2013.6507396

    Article  Google Scholar 

  45. Swindlehurst, A.L., Ayanoglu, E., Heydari, P., Capolino, F.: Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun. Mag. 52(9), 56–62 (2014). doi:10.1109/MCOM.2014.6894453

    Article  Google Scholar 

  46. Talwar, S., Choudhury, D., Dimou, K., Aryafar, E., Bangerter, B., Stewart, K.: Enabling technologies and architectures for 5G wireless. In: IEEE MTT-S International Microwave Symposium (IMS), pp. 1–4 (2014). doi:10.1109/MWSYM.2014.6848639

  47. Telatar, E.: Capacity of multi-antenna gaussian channels. European Trans. Telecommun. 10(6), 585–595 (1999). doi:10.1002/ett.4460100604

    Article  Google Scholar 

  48. Tirouvengadam, B., Radhakrishnan, R., Nayak, A.: CAAHR: Content aware adaptive HARQ retransmission scheme for 4G/LTE network. In: Fourth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 456–461 (2012). doi:10.1109/ICUFN.2012.6261749

  49. Torkildson, E., Madhow, U., Rodwell, M.: Indoor millimeter wave MIMO: feasibility and performance. IEEE Trans. Wireless Commun. 10(12), 4150–4160 (2011). doi:10.1109/TWC.2011.092911.101843

    Article  Google Scholar 

  50. Vakilian, V., Wild, T., Schaich, F., ten Brink, S., Frigon, J.F.: Universal-filtered multi-carrier technique for wireless systems beyond LTE. In: IEEE Globecom Workshops (GC Wkshps), pp. 223–228 (2013). doi:10.1109/GLOCOMW.2013.6824990

  51. Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Yejian, C., Brink, S., Gaspar, I., Michailow, N., Festag, A., Mendes, L., Cassiau, N., Ktenas, D., Dryjanski, M., Pietrzyk, S., Eged, B., Vago, P., Wiedmann, F.: 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 52(2), 97–105 (2014). doi:10.1109/MCOM.2014.6736749

    Google Scholar 

  52. Wunder, G., Kasparick, M., ten Brink, S., Schaich, F., Wild, T., Gaspar, I., Ohlmer, E., Krone, S., Michailow, N., Navarro, A., Fettweis, G., Ktenas, D., Berg, V., Dryjanski, M., Pietrzyk, S., Eged, B.: 5GNOW: challenging the LTE design paradigms of orthogonality and synchronicity. In: IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2013). doi:10.1109/VTCSpring.2013.6691814

  53. Yilmaz, T., Akan, O.B.: On the use of the millimeter wave and low terahertz bands for Internet of Things. In: IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 177–180 (2015). doi: 10.1109/WF-IoT.2015.7389048

  54. Yilmaz, T., Akan, O.B.: Utilizing terahertz band for local and personal area wireless communication systems. In: IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 330–334 (2014). doi:10.1109/CAMAD.2014.7033260

  55. Yilmaz, T., Akan, O.B.: On the use of low terahertz band for 5G indoor mobile networks. Comput. Electr. Eng. 48, 164–173 (2015). doi:10.1016/j.compeleceng.2015.06.012

    Google Scholar 

  56. Yilmaz, T., Akan, O.B.: Millimetre Wave Communications for 5G Wireless Networks, book section 15, CRC Press (2016), to appear

    Google Scholar 

  57. Yilmaz, T., Akan, O.B.: State-of-the-art and research challenges for consumer wireless communications at 60 GHz. IEEE Trans. Consum. Electron. 62(3), (2016), to appear

    Google Scholar 

  58. Yilmaz, T., Fadel, E., Akan, O.B.: Employing 60 GHz ISM band for 5G wireless communications. In: IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 77–82 (2014). doi:10.1109/BlackSeaCom.2014.6849009

  59. Zukang, S., Papasakellariou, A., Montojo, J., Gerstenberger, D., Fangli, X.: Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Commun. Mag. 50(2), 122–130 (2012). doi:10.1109/MCOM.2012.6146491

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant #113E962.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turker Yilmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yilmaz, T., Gokkoca, G., Akan, O.B. (2016). Millimetre Wave Communication for 5G IoT Applications. In: Mavromoustakis, C., Mastorakis, G., Batalla, J. (eds) Internet of Things (IoT) in 5G Mobile Technologies. Modeling and Optimization in Science and Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-30913-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30913-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30911-8

  • Online ISBN: 978-3-319-30913-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics