Social Status and the Non-human Primate Brain

  • Stephanie L. Willard
  • Carol A. ShivelyEmail author
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


Social status hierarchies are a central facet of life for numerous species. Much is known about the effects of social rank on the behavior and physiology of these species, yet the neurobiological effects have not been studied in great detail across species. In humans, low socioeconomic status is associated with poor health-related outcomes across the life span, yet understanding the neurobiological components has proven challenging. Thus, animal studies have focused on the influence of social hierarchy-related stress, most commonly using social conflict to induce a subordinate state or depressive-like behavior. The degree to which stress responses in rodents actually reflect subordination in naturally formed social hierarchies, and not simply stress or even depression, is debatable. Studies of the brain in social species with natural hierarchies resulting from multiple factors will increase our understanding of the neurobiology of social status. Non-human primates form hierarchies, in which either the dominant and/or the subordinate animals can experience stress, depending upon the species. In addition, the non-human primate is very similar to the human brain with regard to neocortical complexity, a key characteristic that distinguishes the highly social primate from other species. In this chapter, we review what is known about the brain with regard to social status in primates, beginning with a brief discussion of the applicability of animal models to understanding social status. We will then discuss in detail what has been reported with regard to the neurobiology of social status in non-human primates, while relating these findings to what is known in humans.


Social status Non-human primate Socioeconomic status Brain Animal models Neurodevelopment Social network size Neurogenesis Monoamines Sex differences Female 


  1. Abbott DH, Keverne EB, Bercovitch FB, Shively CA, Mendoza SP, Saltzman W, Snowdon CT, Ziegler TE, Banjevic M, Garland T Jr, Sapolsky RM (2003) Are subordinates always stressed? A comparative analysis of rank differences in cortisol levels among primates. Horm Behav 43(1):67–82CrossRefPubMedGoogle Scholar
  2. Adler NE, Rehkopf DH (2008) U.S. disparities in health: descriptions, causes, and mechanisms. Annu Rev Public Health 29:235–252CrossRefPubMedGoogle Scholar
  3. Adolphs R (2001) The neurobiology of social cognition. Curr Opin Neurobiol 11(2):231–239CrossRefPubMedGoogle Scholar
  4. Alvarado MC, Bachevalier J (2005) Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J Neurosci 25(6):1599–1609CrossRefPubMedGoogle Scholar
  5. Asher J, Michopoulos V, Reding KM, Wilson ME, Toufexis D (2013) Social stress and the polymorphic region of the serotonin reuptake transporter gene modify oestradiol-induced changes on central monoamine concentrations in female rhesus monkeys. J Neuroendocrinol 25(4):321–328. doi: 10.1111/jne.12009 Google Scholar
  6. Babineau BA, Bliss-Moreau E, Machado CJ, Toscano JE, Mason WA, Amaral DG (2011) Context-specific social behavior is altered by orbitofrontal cortex lesions in adult rhesus macaques. Neuroscience 179:80–93. doi: 10.1016/j.neuroscience.2011.1001.1019
  7. Bachevalier J, Malkova L, Mishkin M (2001) Effects of selective neonatal temporal lobe lesions on socioemotional behavior in infant rhesus monkeys (Macaca mulatta). Behav Neurosci 115(3):545–559CrossRefPubMedGoogle Scholar
  8. Bauman MD, Lavenex P, Mason WA, Capitanio JP, Amaral DG (2004) The development of social behavior following neonatal amygdala lesions in rhesus monkeys. J Cogn Neurosci 16(8):1388–1411CrossRefPubMedGoogle Scholar
  9. Berton O, Aguerre S, Sarrieau A, Mormede P, Chaouloff F (1998) Differential effects of social stress on central serotonergic activity and emotional reactivity in lewis and spontaneously hypertensive rats. Neurosci 82(1):147–159CrossRefGoogle Scholar
  10. Bethea CL, Mirkes SJ, Shively CA, Adams MR (2000) Steroid regulation of tryptophan hydroxylase protein in the dorsal raphe of macaques. Biol Psychiatry 47(6):562–576Google Scholar
  11. Bickart KC, Wright CI, Dautoff RJ, Dickerson BC, Barrett LF (2011) Amygdala volume and social network size in humans. Nat Neurosci 14(2):163–164. doi: 10.1038/nn.2724 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Blanchard DC, Spencer RL, Weiss SM, Blanchard RJ, McEwen B, Sakai RR (1995) Visible burrow system as a model of chronic social stress: behavioral and neuroendocrine correlates. Psychoneuroendocrinol 20(2):117–134CrossRefGoogle Scholar
  13. Blanchard RJ, McKittrick CR, Blanchard DC (2001) Animal models of social stress: effects on behavior and brain neurochemical systems. Physiol Behav 73(3):261–271CrossRefPubMedGoogle Scholar
  14. Bliss-Moreau E, Bauman MD, Amaral DG (2011) Neonatal amygdala lesions result in globally blunted affect in adult rhesus macaques. Behav Neurosci 125(6):848–858. doi: 10.1037/a0025757 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brito NH, Noble KG (2014) Socioeconomic status and structural brain development. Front Neurosci 8:276. doi: 10.3389/fnins.2014.00276
  16. Butterworth P, Cherbuin N, Sachdev P, Anstey KJ (2012) The association between financial hardship and amygdala and hippocampal volumes: results from the PATH through life project. Soc Cogn Affect Neurosci 7(5):548–556. doi: 10.1093/scan/nsr1027 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cavanagh J, Krishnadas R, Batty GD, Burns H, Deans KA, Ford I, McConnachie A, McGinty A, McLean JS, Millar K, Sattar N, Shiels PG, Tannahill C, Velupillai YN, Packard CJ, McLean J (2013) Socioeconomic status and the cerebellar grey matter volume. Data from a well-characterised population sample. Cerebellum 12(6):882–891. doi: 10.1007/s12311-12013-10497-12314 CrossRefPubMedGoogle Scholar
  18. Chiao JY (2010) Neural basis of social status hierarchy across species. Curr Opin Neurobiol 20(6):803–809. doi: 10.1016/j.conb.2010.1008.1006 CrossRefPubMedGoogle Scholar
  19. Choi DC, Nguyen MM, Tamashiro KL, Ma LY, Sakai RR, Herman JP (2006) Chronic social stress in the visible burrow system modulates stress-related gene expression in the bed nucleus of the stria terminalis. Physiol Behav 89(3):301–310CrossRefPubMedGoogle Scholar
  20. Clarke FM, Faulkes CG (1997) Dominance and queen succession in captive colonies of the eusocial naked mole-rat, Heterocephalus glaber. Proc Biol Sci 264(1384):993–1000CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cooper MA, Clinard CT, Morrison KE (2015) Neurobiological mechanisms supporting experience-dependent resistance to social stress. Neuroscience 291:1–14Google Scholar
  22. Coplan JD, Abdallah CG, Tang CY, Mathew SJ, Martinez J, Hof PR, Smith EL, Dwork AJ, Perera TD, Pantol G, Carpenter D, Rosenblum LA, Shungu DC, Gelernter J, Kaffman A, Jackowski A, Kaufman J, Gorman JM (2010) The role of early life stress in development of the anterior limb of the internal capsule in nonhuman primates. Neurosci Lett 480(2):93–96. doi: 10.1016/j.neulet.2010.1006.1012 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 98(22):12796–12801CrossRefPubMedPubMedCentralGoogle Scholar
  24. Czoty PW, Nader MA (2013) Effects of dopamine D2/D3 receptor ligands on food-cocaine choice in socially housed male cynomolgus monkeys. J Pharmacol Exp Ther 344(2):329–338. doi: 10.1124/jpet.1112.201012 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Czoty PW, Morgan D, Shannon EE, Gage HD, Nader MA (2004) Characterization of dopamine D1 and D2 receptor function in socially housed cynomolgus monkeys self-administering cocaine. Psychopharmacol 174(3):381–388CrossRefGoogle Scholar
  26. Czoty PW, Gage HD, Nader MA (2010) Differences in D2 dopamine receptor availability and reaction to novelty in socially housed male monkeys during abstinence from cocaine. Psychopharmacol 208(4):585–592. doi: 10.1007/s00213-00009-01756-00214 CrossRefGoogle Scholar
  27. Czoty PW, Gould RW, Nader MA (2009) Relationship between social rank and cortisol and testosterone concentrations in male cynomolgus monkeys (Macaca fascicularis). J Neuroendocrinol 21(1):68–76. doi: 10.1111/j.1365-2826.2008.01800.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Defelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5:29. doi: 10.3389/fnana.2011.00029
  29. Dunbar RI, Shultz S (2007) Evolution in the social brain. Sci 317(5843):1344–1347CrossRefGoogle Scholar
  30. Eluvathingal TJ, Chugani HT, Behen ME, Juhasz C, Muzik O, Maqbool M, Chugani DC, Makki M (2006) Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatr 117(6):2093–2100CrossRefGoogle Scholar
  31. Embree M, Michopoulos V, Votaw JR, Voll RJ, Mun J, Stehouwer JS, Goodman MM, Wilson ME, Sanchez MM (2013) The emergence and representation of knowledge about social and nonsocial hierarchies. Neuroscience 228:83–100. doi: 10.1016/j.neuroscience.2012.1010.1016
  32. Emery NJ, Capitanio JP, Mason WA, Machado CJ, Mendoza SP, Amaral DG (2001) The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behav Neurosci 115(3):515–544CrossRefPubMedGoogle Scholar
  33. Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370. doi: 10.1016/j.tins.2008.1004.1001 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Sci 268(5217):1578–1584CrossRefGoogle Scholar
  35. Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 10(3):182–190PubMedGoogle Scholar
  36. Fuchs E, Flugge G (2002) Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73(1):247–258CrossRefPubMedGoogle Scholar
  37. Gianaros PJ, Horenstein JA, Hariri AR, Sheu LK, Manuck SB, Matthews KA, Cohen S (2008) Potential neural embedding of parental social standing. Soc Cogn Affect Neurosci 3(2):91–96. doi: 10.1093/scan/nsn1003 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Goldstein JM, Jerram M, Abbs B, Whitfield-Gabrieli S, Makris N (2010) Sex differences in stress response circuitry activation dependent on female hormonal cycle. J Neurosci 30(2):431–438. doi: 10.1523/JNEUROSCI.3021-1509.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17(7):2492–2498PubMedGoogle Scholar
  40. Grant KA, Shively CA, Nader MA, Ehrenkaufer RL, Line SW, Morton TE, Gage HD, Mach RH (1998) Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse 29(1):80–83CrossRefPubMedGoogle Scholar
  41. Gust DA, Gordon TP, Hambright MK, Wilson ME (1993) Relationship between social factors and pituitary-adrenocortical activity in female rhesus monkeys (Macaca mulatta). Horm Behav 27(3):318–331CrossRefPubMedGoogle Scholar
  42. Hackman DA, Farah MJ (2009) Socioeconomic status and the developing brain. Trends Cogn Sci 13(2):65–73. doi: 10.1016/j.tics.2008.1011.1003 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hoffman CL, Ayala JE, Mas-Rivera A, Maestripieri D (2010) Effects of reproductive condition and dominance rank on cortisol responsiveness to stress in free-ranging female rhesus macaques. Am J Primatol 72(7):559–565. doi: 10.1002/ajp.20793 PubMedPubMedCentralGoogle Scholar
  44. Hollis F, Kabbaj M (2014) Social defeat as an animal model for depression. ILAR J 55(2):221–232. doi: 10.1093/ilar/ilu1002 CrossRefPubMedGoogle Scholar
  45. Holmes MM, Rosen GJ, Jordan CL, de Vries GJ, Goldman BD, Forger NG (2007) Social control of brain morphology in a eusocial mammal. Proc Natl Acad Sci U S A 104(25):10548–10552CrossRefPubMedPubMedCentralGoogle Scholar
  46. Holmes MM, Seney ML, Goldman BD, Forger NG (2011) Social and hormonal triggers of neural plasticity in naked mole-rats. Behav Brain Res 218(1):234–239. doi: 10.1016/j.bbr.2010.1011.1056 Epub 2010 Dec 1013CrossRefPubMedPubMedCentralGoogle Scholar
  47. Howell BR, Godfrey J, Gutman DA, Michopoulos V, Zhang X, Nair G, Hu X, Wilson ME, Sanchez MM (2014) Social subordination stress and serotonin transporter polymorphisms: associations with brain white matter tract integrity and behavior in juvenile female macaques. Cereb Cortex 24(12):3334–3349. doi: 10.1093/cercor/bht3187 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jarrell H, Hoffman JB, Kaplan JR, Berga S, Kinkead B, Wilson ME (2008) Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol Behav 93(4–5):807–819Google Scholar
  49. Jarvis JU (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Sci 212(4494):571–573CrossRefGoogle Scholar
  50. Johnson NF, Kim C, Gold BT (2013) Socioeconomic status is positively correlated with frontal white matter integrity in aging. Age 35(6):2045–2056. doi: 10.1007/s11357-11012-19493-11358 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kaas JH (2013) The evolution of brains from early mammals to humans. Wiley Interdiscip Rev Cogn Sci 4(1):33–45CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kaplan JR, Manuck SB, Fontenot MB, Mann JJ (2002) Central nervous system monoamine correlates of social dominance in cynomolgus monkeys (Macaca fascicularis). Neuropsychopharmacol 26(4):431–443CrossRefGoogle Scholar
  53. Koolhaas JM, De Boer SF, De Rutter AJ, Meerlo P, Sgoifo A (1997) Social stress in rats and mice. Acta Physiol Scand Suppl 640:69–72PubMedGoogle Scholar
  54. Kozorovitskiy Y, Gould E (2004) Dominance hierarchy influences adult neurogenesis in the dentate gyrus. J Neurosci 24(30):6755–6759CrossRefPubMedGoogle Scholar
  55. Leuner B, Glasper ER, Gould E (2010) Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones. PLoS One 5(7):e11597. doi: 10.11371/journal.pone.0011597
  56. Lewis PA, Rezaie R, Brown R, Roberts N, Dunbar RI (2011) Ventromedial prefrontal volume predicts understanding of others and social network size. Neuroimage 57(4):1624–1629. doi: 10.1016/j.neuroimage.2011.1605.1030 CrossRefPubMedGoogle Scholar
  57. Liu FG, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, Gugel KF (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Sci 291(5509):1786–1789CrossRefGoogle Scholar
  58. Lorant V, Deliege D, Eaton W, Robert A, Philippot P, Ansseau M (2003) Socioeconomic inequalities in depression: a meta-analysis. Am J Epidemiol 157(2):98–112CrossRefPubMedGoogle Scholar
  59. Luby J, Belden A, Botteron K, Marrus N, Harms MP, Babb C, Nishino T, Barch D (2013) The effects of poverty on childhood brain development: the mediating effect of caregiving and stressful life events. JAMA Pediatr 167(12):1135–1142. doi: 10.1001/jamapediatrics.2013.3139 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lucas LR, Celen Z, Tamashiro KL, Blanchard RJ, Blanchard DC, Markham C, Sakai RR, McEwen BS (2004) Repeated exposure to social stress has long-term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neurosci 124(2):449–457CrossRefGoogle Scholar
  61. Lucassen PJ, Vollmann-Honsdorf GK, Gleisberg M, Czeh B, De Kloet ER, Fuchs E (2001) Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci 14(1):161–166CrossRefPubMedGoogle Scholar
  62. Machado CJ, Bachevalier J (2006) The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behav Neurosci 120(4):761–786CrossRefPubMedGoogle Scholar
  63. Machado CJ, Emery NJ, Capitanio JP, Mason WA, Mendoza SP, Amaral DG (2008) Bilateral neurotoxic amygdala lesions in rhesus monkeys (Macaca mulatta): consistent pattern of behavior across different social contexts. Behav Neurosci 122(2):251–266. doi: 10.1037/0735-7044.1122.1032.1251 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Magarinos AM, McEwen BS, Flugge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16(10):3534–3540PubMedGoogle Scholar
  65. Malkova L, Mishkin M, Suomi SJ, Bachevalier J (2010) Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys (Macaca mulatta). Behav Neurosci 124(6):742–760. doi: 10.1037/a0021622 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Marrow LP, Overton PG, Brain PF (1999) A re-evaluation of social defeat as an animal model of depression. J Psychopharmacol 13(2):115–121CrossRefPubMedGoogle Scholar
  67. Martinez D, Orlowska D, Narendran R, Slifstein M, Liu F, Kumar D, Broft A, Van Heertum R, Kleber HD (2010) Dopamine type 2/3 receptor availability in the striatum and social status in human volunteers. Biol Psychiatry 67(3):275–278. doi: 10.1016/j.biopsych.2009.1007.1037 CrossRefPubMedPubMedCentralGoogle Scholar
  68. McEwen BS, Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 1186:190–222. doi: 10.1111/j.1749-6632.2009.05331.x Google Scholar
  69. McKittrick CR, Magarinos AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (2000) Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 36(2):85–94CrossRefPubMedGoogle Scholar
  70. Michopoulos V, Higgins M, Toufexis D, Wilson ME (2012a) Social subordination produces distinct stress-related phenotypes in female rhesus monkeys. Psychoneuroendocrinol 37(7):1071–1085. doi: 10.1016/j.psyneuen.2011.1012.1004
  71. Michopoulos V, Reding KM, Wilson ME, Toufexis D (2012b) Social subordination impairs hypothalamic-pituitary-adrenal function in female rhesus monkeys. Horm Behav 62(4):389–399. doi: 10.1016/j.yhbeh.2012.1007.1014 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Michopoulos V, Embree M, Reding K, Sanchez MM, Toufexis D, Votaw JR, Voll RJ, Goodman MM, Rivier J, Wilson ME, Berga SL (2013) CRH receptor antagonism reverses the effect of social subordination upon central GABAA receptor binding in estradiol-treated ovariectomized female rhesus monkeys. Neurosci 250:300–8. doi: 10.1016/j.neuroscience.2013.1007.1002
  73. Michopoulos V, Perez Diaz M, Embree M, Reding K, Votaw JR, Mun J, Voll RJ, Goodman MM, Wilson M, Sanchez M, Toufexis D (2014) Oestradiol alters central 5-HT1A receptor binding potential differences related to psychosocial stress but not differences related to 5-HTTLPR genotype in female rhesus monkeys. J Neuroendocrinol 26(2):80–88. doi: 10.1111/jne.12129 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mooney SJ, Peragine DE, Hathaway GA, Holmes MM (2014) A game of thrones: neural plasticity in mammalian social hierarchies. Soc Neurosci 9(2):108–117. doi: 10.1080/17470919.17472014.17882862 CrossRefPubMedGoogle Scholar
  75. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5(2):169–174CrossRefPubMedGoogle Scholar
  76. Murphy DL, Fox MA, Timpano KR, Moya PR, Ren-Patterson R, Andrews AM, Holmes A, Lesch KP, Wendland JR (2008) How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacol 55(6):932–960. doi: 10.1016/j.neuropharm.2008.1008.1034 CrossRefGoogle Scholar
  77. Muscatell KA, Morelli SA, Falk EB, Way BM, Pfeifer JH, Galinsky AD, Lieberman MD, Dapretto M, Eisenberger NI (2012) Social status modulates neural activity in the mentalizing network. Neuroimage 60(3):1771–1777. doi: 10.1016/j.neuroimage.2012.1701.1080 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nobile M, Giorda R, Marino C, Carlet O, Pastore V, Vanzin L, Bellina M, Molteni M, Battaglia M (2007) Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Dev Psychopathol 19(4):1147–1160CrossRefPubMedGoogle Scholar
  79. Noble KG, Korgaonkar MS, Grieve SM, Brickman AM (2013) Higher education is an age-independent predictor of white matter integrity and cognitive control in late adolescence. Dev Sci 16(5):653–664. doi: 10.1111/desc.12077 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Noonan MP, Sallet J, Mars RB, Neubert FX, O’Reilly JX, Andersson JL, Mitchell AS, Bell AH, Miller KL, Rushworth MF (2014) A neural circuit covarying with social hierarchy in macaques. PLoS Biol 12(9):e1001940. doi: 10.1001371/journal.pbio.1001940
  81. Peragine DE, Simpson JA, Mooney SJ, Lovern MB, Holmes MM (2014) Social regulation of adult neurogenesis in a eusocial mammal. Neurosci 268:10–20. doi: 10.1016/j.neuroscience.2014.1002.1044
  82. Perera TD, Dwork AJ, Keegan KA, Thirumangalakudi L, Lipira CM, Joyce N, Lange C, Higley JD, Rosoklija G, Hen R, Sackeim HA, Coplan JD (2011) Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS One 6(4):e17600. doi: 10.11371/journal.pone.0017600
  83. Powell J, Lewis PA, Roberts N, Garcia-Finana M, Dunbar RI (2012) Orbital prefrontal cortex volume predicts social network size: an imaging study of individual differences in humans. Proc Biol Sci 279(1736):2157–2162. doi: 10.1098/rspb.2011.2574 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Prather MD, Lavenex P, Mauldin-Jourdain ML, Mason WA, Capitanio JP, Mendoza SP, Amaral DG (2001) Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neurosci 106(4):653–658CrossRefGoogle Scholar
  85. Raizada RD, Kishiyama MM (2010) Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field. Front Hum Neurosci 4:3. doi: 10.3389/neuro.3309.3003.2010
  86. Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF (2015) Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neurosci 289:429–42. doi: 10.1016/j.neuroscience.2015.1001.1001
  87. Ribble D, Salvioni M (1990) Social orgnaization and nest co-occupancy in Peromyscus californicus, a monogamous rodent. Behav Ecol Sociobiol 26:9–15Google Scholar
  88. Riddick NV, Czoty PW, Gage HD, Kaplan JR, Nader SH, Icenhower M, Pierre PJ, Bennett A, Garg PK, Garg S, Nader MA (2009) Behavioral and neurobiological characteristics influencing social hierarchy formation in female cynomolgus monkeys. Neurosci 158(4):1257–1265. doi: 10.1016/j.neuroscience.2008.1211.1016 CrossRefGoogle Scholar
  89. Roberts SGB, Wilson R, Fedurek P, Dunbar RIM (2008) Individual differences and personal social network size and structure. ‎Pers Individ Dif 44:954–964Google Scholar
  90. Sallet J, Mars RB, Noonan MP, Andersson JL, O’Reilly JX, Jbabdi S, Croxson PL, Jenkinson M, Miller KL, Rushworth MF (2011) Social network size affects neural circuits in macaques. Sci 334(6056):697–700. doi: 10.1126/science.1210027 CrossRefGoogle Scholar
  91. Sapolsky RM (1989) Hypercortisolism among socially subordinate wild baboons originates at the CNS level. Arch Gen Psychiatry 46(11):1047–1051CrossRefPubMedGoogle Scholar
  92. Sapolsky RM (1990) Adrenocortical function, social rank, and personality among wild baboons. Biol Psychiatry 28(10):862–878 A. E. Bennett Award paperCrossRefPubMedGoogle Scholar
  93. Sapolsky RM (1992) Cortisol concentrations and the social significance of rank instability among wild baboons. Psychoneuroendocrinol 17(6):701–709CrossRefGoogle Scholar
  94. Sapolsky RM (2004) Social status and health in humans and other animals. Annu Rev Anthtropol 33:393–418CrossRefGoogle Scholar
  95. Sapolsky RM (2005) The influence of social hierarchy on primate health. Sci 308(5722):648–652CrossRefGoogle Scholar
  96. Sapolsky RM, Alberts SC, Altmann J (1997) Hypercortisolism associated with social subordinance or social isolation among wild baboons. Arch Gen Psychiatry 54(12):1137–1143CrossRefPubMedGoogle Scholar
  97. Scanlon J, Sutton S, Maclin R, Suomi S (1985) The heritability of social dominance in laboratory reared rhesus monkeys. Am J Primatol 8:363–371Google Scholar
  98. Schenker NM, Desgouttes AM, Semendeferi K (2005) Neural connectivity and cortical substrates of cognition in hominoids. J Hum Evol 49(5):547–569 Epub 2005 Aug 2001CrossRefPubMedGoogle Scholar
  99. Shanahan MJ, Vaisey S, Erickson LD, Smolen A (2008) Environmental contingencies and genetic propensities: social capital, educational continuation, and dopamine receptor gene DRD2. Am J Sociol 114(Suppl):S260–286Google Scholar
  100. Sheridan MA, How J, Araujo M, Schamberg MA, Nelson CA (2013) What are the links between maternal social status, hippocampal function, and HPA axis function in children? Dev Sci 16(5):665–675. doi: 10.1111/desc.12087 CrossRefPubMedGoogle Scholar
  101. Shi J, Zhang Y, Liu F, Li Y, Wang J, Flint J, Gao J, Li Y, Tao M, Zhang K, Wang X, Gao C, Yang L, Li K, Shi S, Wang G, Liu L, Zhang J, Du B, Jiang G, Shen J, Zhang Z, Liang W, Sun J, Hu J, Liu T, Wang X, Miao G, Meng H, Li Y, Hu C, Li Y, Huang G, Li G, Ha B, Deng H, Mei Q, Zhong H, Gao S, Sang H, Zhang Y, Fang X, Yu F, Yang D, Liu T, Chen Y, Hong X, Wu W, Chen G, Cai M, Song Y, Pan J, Dong J, Pan R, Zhang W, Shen Z, Liu Z, Gu D, Wang X, Liu X, Zhang Q, Li Y, Chen Y, Kendler KS (2014) Associations of educational attainment, occupation, social class and major depressive disorder among Han Chinese women. PLoS One 9(1):e86674. doi: 10.81371/journal.pone.0086674
  102. Shively CA (1998) Social subordination stress, behavior, and central monoaminergic function in female cynomolgus monkeys. Biol Psychiatry 44(9):882–891CrossRefPubMedGoogle Scholar
  103. Shively CA, Fontenot MB, Kaplan JR (1995) Social status, behavior and central serotonergic responsivity in female cynomolgus monkeys. Amer J Primatol 37:333–339Google Scholar
  104. Shively CA, Friedman DP, Gage HD, Bounds MC, Brown-Proctor C, Blair JB, Henderson JA, Smith MA, Buchheimer N (2006) Behavioral depression and positron emission tomography-determined serotonin 1A receptor binding potential in cynomolgus monkeys. Arch Gen Psychiatry 63(4):396–403Google Scholar
  105. Shively CA, Kaplan JR (1991) Stability of social status rankings of female cynomolgus monkeys, of varying reproductive condition, in different social groups. Am J Primatol 23:239–245Google Scholar
  106. Shively CA, Laber-Laird K, Anton RF (1997) Behavior and physiology of social stress and depression in female cynomolgus monkeys. Biol Psychiatry 41(8):871–882CrossRefPubMedGoogle Scholar
  107. Shively CA, Mirkes SJ, Lu NZ, Henderson JA, Bethea CL (2003) Soy and social stress affect serotonin neurotransmission in primates. Pharmacogenomics J 3(2):114–121Google Scholar
  108. Shively CA, Register TC, Friedman DP, Morgan TM, Thompson J, Lanier T (2005) Social stress-associated depression in adult female cynomolgus monkeys (Macaca fascicularis). Biol Psychol 69(1):67–84CrossRefPubMedGoogle Scholar
  109. Shively CA, Register TC, Higley JD, Willard SL (2014) Sertraline effects on cerebrospinal fluid monoamines and species-typical socioemotional behavior of female cynomolgus monkeys. Psychopharmacol 231(7):1409–1416. doi: 10.1007/s00213-00013-03329-00219 CrossRefGoogle Scholar
  110. Shultz S, Dunbar RI (2007) The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc Biol Sci 274(1624):2429–2436CrossRefPubMedPubMedCentralGoogle Scholar
  111. Siegrist J, Marmot M (2004) Health inequalities and the psychosocial environment-two scientific challenges. Soc Sci Med 58(8):1463–1473CrossRefPubMedGoogle Scholar
  112. Smaers JB, Steele J, Case CR, Cowper A, Amunts K, Zilles K (2011) Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend. Brain Behav Evol 77(2):67–78. doi: 10.1159/000323671 CrossRefPubMedGoogle Scholar
  113. Smith GS, Lotrich FE, Malhotra AK, Lee AT, Ma Y, Kramer E, Gregersen PK, Eidelberg D, Pollock BG (2004) Effects of serotonin transporter promoter polymorphisms on serotonin function. Neuropsychopharmacol 29(12):2226–2234CrossRefGoogle Scholar
  114. Solomon MB, Karom MC, Huhman KL (2007) Sex and estrous cycle differences in the display of conditioned defeat in Syrian hamsters. Horm Behav 52(2):211–219Google Scholar
  115. Spritzer MD, Galea LA (2007) Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male rats. Dev Neurobiol 67(10):1321–1333CrossRefPubMedGoogle Scholar
  116. Staff RT, Murray AD, Ahearn TS, Mustafa N, Fox HC, Whalley LJ (2012) Childhood socioeconomic status and adult brain size: childhood socioeconomic status influences adult hippocampal size. Ann Neurol 71(5):653–660. doi: 10.1002/ana.22631 CrossRefPubMedGoogle Scholar
  117. Tamashiro KL, Nguyen MM, Fujikawa T, Xu T, Yun Ma L, Woods SC, Sakai RR (2004) Metabolic and endocrine consequences of social stress in a visible burrow system. Physiol Behav 80(5):683–693CrossRefPubMedGoogle Scholar
  118. Ter Horst GJ, Wichmann R, Gerrits M, Westenbroek C, Lin Y (2009) Sex differences in stress responses: focus on ovarian hormones. Physiol Behav 97(2):239–249. doi: 10.1016/j.physbeh.2009.1002.1036 CrossRefPubMedGoogle Scholar
  119. Trainor BC (2011) Stress responses and the mesolimbic dopamine system: social contexts and sex differences. Horm Behav 60(5):457–469. doi: 10.1016/j.yhbeh.2011.1008.1013 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Trainor BC, Pride MC, Villalon Landeros R, Knoblauch NW, Takahashi EY, Silva AL, Crean KK (2011) Sex differences in social interaction behavior following social defeat stress in the monogamous California mouse (Peromyscus californicus). PLoS ONE 6(2):e17405. doi: 10.11371/journal.pone.0017405 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Wang F, Kessels HW, Hu H (2014) The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci 37(11):674–682. doi: 10.1016/j.tins.2014.1007.1005 CrossRefPubMedGoogle Scholar
  122. Watson KK, Ghodasra JH, Platt ML (2009) Serotonin transporter genotype modulates social reward and punishment in rhesus macaques. PLoS ONE 4(1):e4156. doi: 10.1371/journal.pone.0004156 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Wilson ME, Legendre A, Pazol K, Fisher J, Chikazawa K (2005) Gonadal steroid modulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis is influenced by social status in female rhesus monkeys. Endocr 26(2):89–97CrossRefGoogle Scholar
  124. Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri). Anat Rec 292(7):994–1027. doi: 10.1002/ar.20916 CrossRefGoogle Scholar
  125. Wu MV, Shamy JL, Bedi G, Choi CW, Wall MM, Arango V, Boldrini M, Foltin RW, Hen R (2014) Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus. Neuropsychopharmacol 39(8):1861–1871. doi: 10.1038/npp.2014.1833 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Pathology, Section on Comparative MedicineWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations