Advertisement

Effects of Social Subordination on Macaque Neurobehavioral Outcomes: Focus on Neurodevelopment

  • Jodi R. GodfreyEmail author
  • Melanie Pincus
  • Mar M. Sanchez
Chapter
  • 385 Downloads
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Abstract

Social stress during childhood and adolescence leads to alterations in emotional and stress reactivity and neuroendocrine function. These negative experiences have also been associated with alterations in brain development that lead to psychopathology, such as anxiety and depression, which are more prevalent in females than males and often emerge during adolescence. As longitudinal studies in children are fraught with difficulties and limitations, animal models provide an invaluable tool to understand the mechanisms underlying the emergence and development of emotional dysregulation. Macaques provide an excellent model organism, as naturally occurring social subordination in social groups is an ethologically valid chronic social stress experience with reported pathological effects. Although this model has been used to investigate the effects of social subordination stress on numerous neural and behavioral outcomes in adults, few studies have focused on elucidating its effects during development. In this chapter, we review the effects of chronic subordination stress in adult macaques, but also the emerging literature on its neurodevelopmental consequences, particularly for females. Findings indicate that social subordination affects brain structure and function, particularly corticolimbic circuits that regulate social and emotional processes and endocrine function. This neural adaptation may enhance the ability of subordinates to effectively navigate social environments requiring rapid recognition of social signals and the social status of conspecifics relative to self. This translational animal model of social stress is vital to understand the basic mechanisms and principles that translate social experiences into developmental outcomes in our own species.

Keywords

Nonhuman primate Social stress Neuroimaging Neurobiology 

References

  1. Abbott DH, Keverne EB, Bercovitch FB, Shively CA, Mendoza SP, Saltzman W, Snowdon CT, Ziegler TE, Banjevic M, Garland T, Sapolsky RM (2003) Are subordinates always stressed? a comparative analysis of rank differences in cortisol levels among primates. Horm Behav 43:67–82PubMedCrossRefGoogle Scholar
  2. Adams MR, Kaplan JR, Koritnik DR (1985) Psychosocial influences on ovarian endocrine and ovulatory function in Macaca fascicularis. Physiol Behav 35(6):935–940PubMedCrossRefGoogle Scholar
  3. Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7(4):268–277PubMedCrossRefGoogle Scholar
  4. Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27(1–2):3–18PubMedCrossRefGoogle Scholar
  5. Angold A, Costello EJ, Worthman CM (1998) Puberty and depression: the roles of age, pubertal status and pubertal timing. Psychol Med 28(1):51–61PubMedCrossRefGoogle Scholar
  6. Anisman H, Zacharko RM (1992) Depression as a consequence of inadequate neurochemical adaptation in response to stressors. Br J Psychiatry Suppl(15):36–43Google Scholar
  7. Ansell EB, Rando K, Tuit K, Guarnaccia J, Sinha R (2012) Cumulative adversity and smaller gray matter volume in medial prefrontal, anterior cingulate, and insula regions. Biol Psychiatry 72:57–64PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arce M, Michopoulos V, Shepard KN, Ha QC, Wilson ME (2010) Diet choice, cortisol reactivity, and emotional feeding in socially housed rhesus monkeys. Physiol Behav 101(4):446–455PubMedPubMedCentralCrossRefGoogle Scholar
  9. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219PubMedCrossRefGoogle Scholar
  10. Bauman MD, Lavenex P, Mason WA, Capitanio JP, Amaral DG (2004) The development of social behavior following neonatal amygdala lesions in rhesus monkeys. J Cogn Neurosci 16(8):1388–1411PubMedCrossRefGoogle Scholar
  11. Becker JB, Monteggia LM, Perrot-Sinal TS, Romeo RD, Taylor JR, Yehuda R, Bale TL (2007) Stress and disease: is being female a predisposing factor? J Neurosci 27(44):11851–11855PubMedCrossRefGoogle Scholar
  12. Berman CM (1980) Mother-infant relationships among free-ranging rhesus monkeys on Cayo Santiago: a comparison with captive pairs. Anim Behav 28(3):860–873CrossRefGoogle Scholar
  13. Bernstein IS (1970) Primate status hierarchies. In: Primate behavior: developments in field and laboratory research, vol 1, pp 71–109Google Scholar
  14. Bernstein IS (1976) Dominance, aggression and reproduction in primate societies. J Theor Biol 60(2):459–472PubMedCrossRefGoogle Scholar
  15. Bernstein IS, Ehardt CL (1985) Age-sex differences in the expression of agonistic behavior in rhesus monkey (Macaca mulatta) groups. J Comp Psychol 99(2):115–132PubMedCrossRefGoogle Scholar
  16. Bernstein IS, Gordon TP (1974) The function of aggression in primate societies. Am Sci 62(3):304–311PubMedGoogle Scholar
  17. Bernstein IS, Gordon TP (1977) Behavioral research in breeding colonies of Old World monkeys. Lab Anim Sci 27(4):532–540PubMedGoogle Scholar
  18. Bernstein IS, Gordon TP, Rose RM (1974) Aggression and social controls in rhesus monkey (Macaca mulatta) groups revealed in group formation studies. Folia Primatol (Basel) 21(2):81–107CrossRefGoogle Scholar
  19. Bethea CL, Streicher JM, Coleman K, Pau FK, Moessner R, Cameron JL (2004) Anxious behavior and fenfluramine-induced prolactin secretion in young rhesus macaques with different alleles of the serotonin reuptake transporter polymorphism (5HTTLPR). Behav Genet 34(3):295–307PubMedCrossRefGoogle Scholar
  20. Bowers G, Cullinan WE, Herman JP (1998) Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18(15):5938–5947PubMedGoogle Scholar
  21. Bradley RH, Corwyn RF (2002) Socioeconomic status and child development. Annu Rev Psychol 53:371–399PubMedCrossRefGoogle Scholar
  22. Bremner JD, Vermetten E (2001) Stress and development: behavioral and biological consequences. Dev Psychopathol 13(3):473–489CrossRefGoogle Scholar
  23. Byrne, RW, Whiten A (1988) Machiavellian intelligence: social expertise and the evolution of intellect in monkeys, apes, and humans. Clarendon PressGoogle Scholar
  24. Cameron JL (2004) Interrelationships between hormones behavior and affect during adolescence complex relationships exist between reproductive hormones stress-related hormones and the activity of neural systems that regulate behavioral affect. Ann N Y Acad Sci 1021:134–142PubMedCrossRefGoogle Scholar
  25. Centeno ML, Sanchez RL, Cameron JL, Bethea CL (2007) Hypothalamic expression of serotonin 1A, 2A and 2C receptor and GAD67 mRNA in female cynomolgus monkeys with different sensitivity to stress. Brain Res 1142:1–12PubMedCrossRefGoogle Scholar
  26. Chao HM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (1993) The effect of social stress on hippocampal gene expression. Mol Cell Neurosci 4(6):543–548PubMedCrossRefGoogle Scholar
  27. Chareyron LJ, Lavenex PB, Amaral DG, Lavenex P (2012) Postnatal development of the amygdala: a stereological study in macaque monkeys. J Comp Neurol 520(9):1965–1984PubMedPubMedCentralCrossRefGoogle Scholar
  28. Charmandari E, Kino T, Souvatzoglou E, Chrousos GP (2003) Pediatric stress: hormonal mediators and human development. Horm Res 59:161–179PubMedCrossRefGoogle Scholar
  29. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267(9):1244–1252PubMedCrossRefGoogle Scholar
  30. Cullinan WE, Ziegler DR, Herman JP (2008) Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213(1–2):63–72PubMedCrossRefGoogle Scholar
  31. Czoty PW, Morgan D, Shannon EE, Gage HD, Nader MA (2004) Characterization of dopamine D1 and D2 receptor function in socially housed cynomolgus monkeys self-administering cocaine. Psychopharmacology 174(3):381–388PubMedCrossRefGoogle Scholar
  32. Dunbar RI, Shultz S (2007) Understanding primate brain evolution. Philos Trans R Soc Lond B Biol Sci 362(1480):649–658PubMedPubMedCentralCrossRefGoogle Scholar
  33. Embree M, Michopoulos V, Votaw JR, Voll RJ, Mun J, Stehouwer JS, Goodman MM, Wilson ME, Sanchez MM (2013) The relation of developmental changes in brain serotonin transporter (5HTT) and 5HT1A receptor binding to emotional behavior in female rhesus monkeys: effects of social status and 5HTT genotype. Neuroscience 228:83–100PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fernandes C, McKittrick CR, File SE, McEwen BS (1997) Decreased 5-HT1A and increased 5-HT2A receptor binding after chronic corticosterone associated with a behavioural indication of depression but not anxiety. Psychoneuroendocrinology 22(7):477–491PubMedCrossRefGoogle Scholar
  35. Forbes EE, Williamson DE, Ryan ND, Dahl RE (2004) Positive and negative affect in depression: influence of sex and puberty. Ann N Y Acad Sci 1021:341–347PubMedCrossRefGoogle Scholar
  36. Fukumitsu N, Tsuchida D, Ogi S, Uchiyama M, Mori Y (2002) 125I-iomazenil-benzodiazepine receptor binding during psychological stress in rats. Ann Nucl Med 16(3):231–235PubMedCrossRefGoogle Scholar
  37. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH, Hare TA, Bookheimer SY, Tottenham N (2013) Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci USA 110(39):15638–15643PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ghashghaei HT, Hilgetag CC, Barbas H (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34(3):905–923PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gibson KR (1991) Myelination and behavioral development: a comparative perspective on questions of neotony, altriciality, and intelligence. In: Gibson KP, Hawthorne AC (eds) Brain maturation and cognitive development: comparative and cross-cultural perspectives. Aldine de Gruyter, New York, pp 29–63Google Scholar
  40. Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 1021:77–85PubMedCrossRefGoogle Scholar
  41. Gilman SE, Kawachi I, Fitzmaurice GM, Buka SL (2002) Socioeconomic status in childhood and the lifetime risk of major depression. Int J Epidemiol 31(2):359–367PubMedCrossRefGoogle Scholar
  42. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101(21):8174–8179PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goldman-Rakic PS (1987) Development of cortical circuitry and cognitive function. Child Dev 58(3):601–622PubMedCrossRefGoogle Scholar
  44. Grant KA, Shively CA, Nader MA, Ehrenkaufer RL, Line SW, Morton TE, Gage HD, Mach RH (1998) Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse 29(1):80–83PubMedCrossRefGoogle Scholar
  45. Gust DA, Gordon TP, Wilson ME, Ahmed-Ansari A, Brodie AR, McClure HM (1991) Formation of a new social group of unfamiliar female rhesus monkeys affects the immune and pituitary adrenocortical systems. Brain Behav Immun 5(3):296–307PubMedCrossRefGoogle Scholar
  46. Hackman DA, Farah MJ (2009) Socioeconomic status and the developing brain. Trends Cogn Sci 13(2):65–73PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hanson JL, Chung MK, Avants BB, Shirtcliff EA, Gee JC, Davidson RJ, Pollak SD (2010) Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk. J Neurosci 30(22):7466–7472PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hanson JL, Chung MK, Avants BB, Rudolph KD, Shirtcliff EA, Gee JC, Davidson RJ, Pollak SD (2012) Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory. J Neurosci 32:7917–7925 (the official journal of the Society for Neuroscience)PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hasler G, van der Veen JW, Grillon C, Drevets WC, Shen J (2010) Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy. Am J Psychiatry 167(10):1226–1231PubMedPubMedCentralCrossRefGoogle Scholar
  50. Herman JP, McKlveen JM, Solomon MB, Carvalho-Netto E, Myers B (2012) Neural regulation of the stress response: glucocorticoid feedback mechanisms. Braz J Med Biol Res 45(4):292–298PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hertzman C (1999) The biological embedding of early experience and its effects on health in adulthood. Ann N Y Acad Sci 896:85–95PubMedCrossRefGoogle Scholar
  52. Hertzman C, Wiens M (1996) Child development and long-term outcomes: a population health perspective and summary of successful interventions. Soc Sci Med 43(7):1083–1095PubMedCrossRefGoogle Scholar
  53. Hinde RA, Spencer-Booth Y (1971) Effects of brief separation from mother on rhesus monkeys. Science 173(3992):111–118PubMedCrossRefGoogle Scholar
  54. Holsboer F (1999a) Neuroendocrine studies and antidepressant drug development. Seishin Shinkeigaku Zasshi 101(9):711–716PubMedGoogle Scholar
  55. Holsboer F (1999b) The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 33(3):181–214PubMedCrossRefGoogle Scholar
  56. Howell BR, Godfrey J, Gutman DA, Michopoulos V, Zhang X, Nair G, Hu X, Wilson ME, Sanchez MM (2014a) Social subordination stress and serotonin transporter polymorphisms: associations with brain white matter tract integrity and behavior in juvenile female macaques. Cereb Cortex 24(12):3334–3349PubMedPubMedCentralCrossRefGoogle Scholar
  57. Howell BR, Grand AP, McCormack KM, Shi Y, LaPrarie JL, Maestripieri D, Styner MA, Sanchez MM (2014b) Early adverse experience increases emotional reactivity in juvenile rhesus macaques: relation to amygdala volume. Dev Psychobiol 56(8):1735–1746PubMedPubMedCentralCrossRefGoogle Scholar
  58. Howell BR, Neigh G, Sanchez MM (2016) Animal models of developmental psychopathology. In: Cicchetti D (ed) Developmental psychopathology, 3rd edn. Wiley, New York (in press)Google Scholar
  59. Imperato A, Angelucci L, Casolini P, Zocchi A, Puglisi-Allegra S (1992) Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 577(2):194–199PubMedCrossRefGoogle Scholar
  60. Jackson ME, Moghaddam B (2006) Distinct patterns of plasticity in prefrontal cortex neurons that encode slow and fast responses to stress. Eur J Neurosci 24(6):1702–1710PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jarrell H, Hoffman JB, Kaplan JR, Berga S, Kinkead B, Wilson ME (2008) Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol Behav 93:807–819PubMedPubMedCentralCrossRefGoogle Scholar
  62. Johnson EO, Kamilaris TC, Chrousos GP, Gold PW (1992) Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev 16(2):115–130PubMedCrossRefGoogle Scholar
  63. Juster RP, McEwen BS, Lupien SJ (2010) Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev 35(1):2–16PubMedCrossRefGoogle Scholar
  64. Kalin NH (2003) Nonhuman primate studies of fear, anxiety, and temperament and the role of benzodiazepine receptors and GABA systems. J Clin Psychiatry 64(Suppl 3):41–44PubMedGoogle Scholar
  65. Kalin NH, Shelton SE (1989) Defensive behaviors in infant rhesus monkeys: environmental cues and neurochemical regulation. Science 243(4899):1718–1721PubMedCrossRefGoogle Scholar
  66. Kalin NH, Shelton SE (2003) Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Ann N Y Acad Sci 1008:189–200PubMedCrossRefGoogle Scholar
  67. Kaplan JR (2008) Origins and health consequences of stress-induced ovarian dysfunction. Interdiscip Top Gerontol 36:162–185PubMedCrossRefGoogle Scholar
  68. Kaplan JR, Manuck SB (2004) Ovarian dysfunction, stress, and disease: a primate continuum. ILAR J 45(2):89–115PubMedCrossRefGoogle Scholar
  69. Kaplan JR, Adams MR, Clarkson TB, Manuck SB, Shively CA, Williams JK (1996) Psychosocial factors, sex differences, and atherosclerosis: lessons from animal models. Psychosom Med 58(6):598–611PubMedCrossRefGoogle Scholar
  70. Kaplan JR, Manuck SB, Fontenot MB, Mann JJ (2002) Central nervous system monoamine correlates of social dominance in cynomolgus monkeys (Macaca fascicularis). Neuropsychopharmacology 26(4):431–443PubMedCrossRefGoogle Scholar
  71. Kaplan JR, Chen H, Appt SE, Lees CJ, Franke AA, Berga SL, Wilson ME, Manuck SB, Clarkson TB (2010) Impairment of ovarian function and associated health-related abnormalities are attributable to low social status in premenopausal monkeys and not mitigated by a high-isoflavone soy diet. Hum Reprod 25(12):3083–3094PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kessler RC, Avenevoli S, Ries Merikangas K (2001) Mood disorders in children and adolescents: an epidemiologic perspective. Biol Psychiatry 49(12):1002–1014PubMedCrossRefGoogle Scholar
  73. Kim J, Cicchetti D (2010) Longitudinal pathways linking child maltreatment, emotion regulation, peer relations, and psychopathology. J Child Psychol Psychiatry 51(6):706–716PubMedPubMedCentralCrossRefGoogle Scholar
  74. Knickmeyer RC, Styner M, Short SJ, Lubach GR, Kang C, Hamer R, Coe CL, Gilmore JH (2010) Maturational trajectories of cortical brain development through the pubertal transition: unique species and sex differences in the monkey revealed through structural magnetic resonance imaging. Cereb Cortex 20:1053–1063 (New York, N.Y.: 1991)Google Scholar
  75. Knudsen EI (2004) Sensitive periods in the development of the brain and behavior. J Cogn Neurosci 16(8):1412–1425PubMedCrossRefGoogle Scholar
  76. Kolber BJ, Roberts MS, Howell MP, Wozniak DF, Sands MS, Muglia LJ (2008) Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proc Natl Acad Sci USA 105(33):12004–12009PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kumaran D, Melo HL, Duzel E (2012) The emergence and representation of knowledge about social and nonsocial hierarchies. Neuron 76(3):653–666PubMedPubMedCentralCrossRefGoogle Scholar
  78. LaMantia AS, Rakic P (1990) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10(7):2156–2175PubMedGoogle Scholar
  79. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546PubMedCrossRefGoogle Scholar
  80. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40(3):1044–1055PubMedCrossRefGoogle Scholar
  81. Losada ME (1988) Changes in central GABAergic function following acute and repeated stress. Br J Pharmacol 93(3):483–490CrossRefGoogle Scholar
  82. Machado CJ, Bachevalier J (2003) Non-human primate models of childhood psychopathology: the promise and the limitations. J Child Psychol Psychiatry 44:64–87PubMedCrossRefGoogle Scholar
  83. Makino S, Smith MA, Gold PW (1995) Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Endocrinology 136(8):3299–3309PubMedGoogle Scholar
  84. Makino S, Hashimoto K, Gold PW (2002) Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav 73(1):147–158PubMedCrossRefGoogle Scholar
  85. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904PubMedCrossRefGoogle Scholar
  86. McEwen BS (2012) Brain on stress: how the social environment gets under the skin. Proc Natl Acad Sci USA 109(Suppl 2):17180–17185PubMedPubMedCentralCrossRefGoogle Scholar
  87. Meloni EG, Reedy CL, Cohen BM, Carlezon WA Jr (2008) Activation of raphe efferents to the medial prefrontal cortex by corticotropin-releasing factor: correlation with anxiety-like behavior. Biol Psychiatry 63(9):832–839PubMedPubMedCentralCrossRefGoogle Scholar
  88. Meunier M, Bachevalier J, Murray EA, Malkova L, Mishkin M (1999) Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. Eur J Neurosci 11(12):4403–4418PubMedCrossRefGoogle Scholar
  89. Michopoulos V, Berga SL, Kaplan JR, Wilson ME (2009) Social subordination and polymorphisms in the gene encoding the serotonin transporter enhance estradiol inhibition of luteinizing hormone secretion in female rhesus monkeys. Biol Reprod 81:1154–1163PubMedPubMedCentralCrossRefGoogle Scholar
  90. Michopoulos V, Higgins M, Toufexis D, Wilson ME (2012a) Social subordination produces distinct stress-related phenotypes in female rhesus monkeys. Psychoneuroendocrinology 37(7):1071–1085PubMedPubMedCentralCrossRefGoogle Scholar
  91. Michopoulos V, Reding KM, Wilson ME, Toufexis D (2012b) Social subordination impairs hypothalamic-pituitary-adrenal function in female rhesus monkeys. Horm Behav 62(4):389–399PubMedPubMedCentralCrossRefGoogle Scholar
  92. Michopoulos V, Toufexis D, Wilson ME (2012c) Social stress interacts with diet history to promote emotional feeding in females. Psychoneuroendocrinology 37(9):1479–1490PubMedPubMedCentralCrossRefGoogle Scholar
  93. Michopoulos V, Embree M, Reding K, Sanchez MM, Toufexis D, Votaw JR, Voll RJ, Goodman MM, Rivier J, Wilson ME, Berga SL (2013) CRH receptor antagonism reverses the effect of social subordination upon central GABAA receptor binding in estradiol-treated ovariectomized female rhesus monkeys. Neuroscience 250:300–308PubMedCrossRefGoogle Scholar
  94. Michopoulos V, Perez Diaz M, Embree M, Reding K, Votaw JR, Mun J, Voll RJ, Goodman MM, Wilson M, Sanchez M, Toufexis D (2014) Oestradiol alters central 5-HT1A receptor binding potential differences related to psychosocial stress but not differences related to 5-HTTLPR genotype in female rhesus monkeys. J Neuroendocrinol 26(2):80–88PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mora F, Segovia G, Del Arco A, de Blas M, Garrido P (2012) Stress, neurotransmitters, corticosterone and body-brain integration. Brain Res 1476:71–85PubMedCrossRefGoogle Scholar
  96. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5(2):169–174PubMedCrossRefGoogle Scholar
  97. Myers B, McKlveen JM, Herman JP (2012) Neural regulation of the stress response: the many faces of feedback. Cell Mol NeurobiolGoogle Scholar
  98. Nanda SA, Qi C, Roseboom PH, Kalin NH (2008) Predator stress induces behavioral inhibition and amygdala somatostatin receptor 2 gene expression. Genes Brain Behav 7(6):639–648PubMedPubMedCentralCrossRefGoogle Scholar
  99. Noonan MP, Sallet J, Mars RB, Neubert FX, O’Reilly JX, Andersson JL, Mitchell AS, Bell AH, Miller KL, Rushworth MF (2014) A neural circuit covarying with social hierarchy in macaques. PLoS Biol 12(9):e1001940PubMedPubMedCentralCrossRefGoogle Scholar
  100. Paiardini M, Hoffman J, Cervasi B, Ortiz AM, Stroud F, Silvestri G, Wilson ME (2009) T-cell phenotypic and functional changes associated with social subordination and gene polymorphisms in the serotonin reuptake transporter in female rhesus monkeys. Brain Behav Immun 23(2):286–293PubMedPubMedCentralCrossRefGoogle Scholar
  101. Papp M, Muscat R, Willner P (1993) Subsensitivity to rewarding and locomotor stimulant effects of a dopamine agonist following chronic mild stress. Psychopharmacology 110(1–2):152–158PubMedCrossRefGoogle Scholar
  102. Papp M, Klimek V, Willner P (1994) Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology 115(4):441–446PubMedCrossRefGoogle Scholar
  103. Payne C, Machado CJ, Bliwise NG, Bachevalier J (2010) Maturation of the hippocampal formation and amygdala in Macaca mulatta: a volumetric magnetic resonance imaging study. Hippocampus 20(8):922–935PubMedPubMedCentralCrossRefGoogle Scholar
  104. Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360(1456):781–795PubMedPubMedCentralCrossRefGoogle Scholar
  105. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48(1):46–57PubMedCrossRefGoogle Scholar
  106. Puglisi-Allegra S, Imperato A, Angelucci L, Cabib S (1991) Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res 554(1–2):217–222PubMedCrossRefGoogle Scholar
  107. Quirk GJ, Beer JS (2006) Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol 16(6):723–727PubMedCrossRefGoogle Scholar
  108. Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60(4):436–444PubMedCrossRefGoogle Scholar
  109. Reardon LE, Leen-Feldner EW, Hayward C (2009) A critical review of the empirical literature on the relation between anxiety and puberty. Clin Psychol Rev 29(1):1–23PubMedPubMedCentralCrossRefGoogle Scholar
  110. Reding K, Michopoulos V, Wallen K, Sanchez M, Wilson ME, Toufexis D (2012) Social status modifies estradiol activation of sociosexual behavior in female rhesus monkeys. Horm Behav 62(5):612–620PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rincon-Cortes M, Barr GA, Mouly AM, Shionoya K, Nunez BS, Sullivan RM (2015) Enduring good memories of infant trauma: rescue of adult neurobehavioral deficits via amygdala serotonin and corticosterone interaction. Proc Natl Acad Sci USA 112(3):881–886PubMedPubMedCentralCrossRefGoogle Scholar
  113. Roy BN, Reid RL, Van Vugt DA (1999) The effects of estrogen and progesterone on corticotropin-releasing hormone and arginine vasopressin messenger ribonucleic acid levels in the paraventricular nucleus and supraoptic nucleus of the rhesus monkey. Endocrinology 140(5):2191–2198PubMedCrossRefGoogle Scholar
  114. Sade DS (1967) Determinants of dominance in a group of free-ranging rhesus monkeys. Social communication among primates 99–114Google Scholar
  115. Sallet J, Mars RB, Noonan MP, Andersson JL, O’Reilly JX, Jbabdi S, Croxson PL, Jenkinson M, Miller KL, Rushworth MF (2011) Social network size affects neural circuits in macaques. Science 334(6056):697–700PubMedCrossRefGoogle Scholar
  116. Sanchez MM, Young LJ, Plotsky PM, Insel TR (2000) Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci 20(12):4657–4668PubMedGoogle Scholar
  117. Sapolsky RM (2005) The influence of social hierarchy on primate health. Science 308:648–652 (New York, N.Y.)PubMedCrossRefGoogle Scholar
  118. Schino G, Troisi A, Perretta G, Monaco V (1991) Measuring anxiety in nonhuman primates: effect of lorazepam on macaque scratching. Pharmacol Biochem Behav 38(4):889–891PubMedCrossRefGoogle Scholar
  119. Schruers K, van Diest R, Nicolson N, Griez E (2002) L-5-hydroxytryptophan induced increase in salivary cortisol in panic disorder patients and healthy volunteers. Psychopharmacology 161(4):365–369PubMedCrossRefGoogle Scholar
  120. Schwartz SM, Wilson ME, Walker ML, Collins DC (1985) Social and growth correlates of the onset of puberty in female rhesus monkeys. Nutr Behav 2:225–232Google Scholar
  121. Seeman MV (1997) Psychopathology in women and men: focus on female hormones. Am J Psychiatry 154(12):1641–1647PubMedCrossRefGoogle Scholar
  122. Shansky RM, Morrison JH (2009) Stress-induced dendritic remodeling in the medial prefrontal cortex: effects of circuit, hormones and rest. Brain Res 1293:108–113PubMedPubMedCentralCrossRefGoogle Scholar
  123. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28(14):3586–3594PubMedCrossRefGoogle Scholar
  124. Shepard JD, Barron KW, Myers DA (2000) Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Res 861(2):288–295PubMedCrossRefGoogle Scholar
  125. Shively CA (1998) Social subordination stress, behavior, and central monoaminergic function in female cynomolgus monkeys. Biol Psychiatry 44(9):882–891PubMedCrossRefGoogle Scholar
  126. Shively CA, Kaplan J (1984) Effects of social factors on adrenal weight and related physiology of Macaca fascicularis. Physiol Behav 33(5):777–782PubMedCrossRefGoogle Scholar
  127. Shively CA, Fontenot MB, Kaplan JR (1995) Social status, behavior, and central serotonergic responsivity in female cynomolgus monkeys. Am J Primatol 37(4):333–339CrossRefGoogle Scholar
  128. Shively CA, Laber-Laird K, Anton RF (1997) Behavior and physiology of social stress and depression in female cynomolgus monkeys. Biol Psychiatry 41(8):871–882PubMedCrossRefGoogle Scholar
  129. Shively CA, Register TC, Friedman DP, Morgan TM, Thompson J, Lanier T (2005) Social stress-associated depression in adult female cynomolgus monkeys (Macaca fascicularis). Biol Psychol 69(1):67–84PubMedCrossRefGoogle Scholar
  130. Shively CA, Friedman DP, Gage HD, Bounds MC, Brown-Proctor C, Blair JB, Henderson JA, Smith MA, Buchheimer N (2006) Behavioral depression and positron emission tomography-determined serotonin 1A receptor binding potential in cynomolgus monkeys. Arch Gen Psychiatry 63(4):396–403PubMedCrossRefGoogle Scholar
  131. Silk JB (2002) Practice random acts of aggression and senseless acts of intimidation: the logic of status contests in social groups. Evol Anthropol: Issues News Rev 11(6):221–225CrossRefGoogle Scholar
  132. Skerritt JH, Trisdikoon P, Johnston GA (1981) Increased GABA binding in mouse brain following acute swim stress. Brain Res 215(1–2):398–403PubMedCrossRefGoogle Scholar
  133. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505PubMedCrossRefGoogle Scholar
  134. Spencer-Booth Y (1968) The behaviour of group companions towards rhesus monkey infants. Anim Behav 16(4):541–557PubMedCrossRefGoogle Scholar
  135. Steiner M, Dunn E, Born L (2003) Hormones and mood: from menarche to menopause and beyond. J Affect Disord 74(1):67–83PubMedCrossRefGoogle Scholar
  136. Suomi SJ (1983) Models of depression in primates. Psychol Med 13(3):465–468PubMedCrossRefGoogle Scholar
  137. Swerdlow NR, Hartman PL, Auerbach PP (1997) Changes in sensorimotor inhibition across the menstrual cycle: implications for neuropsychiatric disorders. Biol Psychiatry 41(4):452–460PubMedCrossRefGoogle Scholar
  138. Troisi A (2002) Displacement activities as a behavioral measure of stress in nonhuman primates and human subjects. Stress 5(1):47–54PubMedCrossRefGoogle Scholar
  139. Troisi A, Schino G, D’Antoni M, Pandolfi N, Aureli F, D’Amato FR (1991) Scratching as a behavioral index of anxiety in macaque mothers. Behav Neural Biol 56(3):307–313PubMedCrossRefGoogle Scholar
  140. Tung J, Barreiro LB, Johnson ZP, Hansen KD, Michopoulos V, Toufexis D, Michelini K, Wilson ME, Gilad Y (2012) Social environment is associated with gene regulatory variation in the rhesus macaque immune system. Proc Natl Acad Sci USA 109(17):6490–6495PubMedPubMedCentralCrossRefGoogle Scholar
  141. Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10(6):397–409PubMedPubMedCentralCrossRefGoogle Scholar
  142. Vaillancourt C, Cyr M, Rochford J, Boksa P, Di Paolo T (2002) Effects of ovariectomy and estradiol on acoustic startle responses in rats. Pharmacol Biochem Behav 74(1):103–109PubMedCrossRefGoogle Scholar
  143. Wilson ME, Kinkead B (2008) Gene-environment interactions, not neonatal growth hormone deficiency, time puberty in female rhesus monkeys. Biol Reprod 78(4):736–743PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wilson ME, Gordon TP, Collins DC (1986) Ontogeny of luteinizing hormone secretion and first ovulation in seasonal breeding rhesus monkeys. Endocrinology 118(1):293–301PubMedCrossRefGoogle Scholar
  145. Wilson ME, Legendre A, Pazol K, Fisher J, Chikazawa K (2005a) Gonadal steroid modulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis is influenced by social status in female rhesus monkeys. Endocrine 26:89–97PubMedCrossRefGoogle Scholar
  146. Wilson ME, Pazol K, Legendre A, Fisher J, Chikazawa K (2005) Gonadal steroid modulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis is influenced by social status in female rhesus monkeys. Endocrine 26(2)Google Scholar
  147. Wilson M, Fisher J, Fischer A, Lee V (2008) Quantifying food intake in socially housed monkeys: social status effects on caloric consumption. Physiology & Behav 94:586–594CrossRefGoogle Scholar
  148. Wilson ME, Bounar S, Godfrey J, Michopoulos V, Higgins M, Sanchez M (2013) Social and emotional predictors of the tempo of puberty in female rhesus monkeys. Psychoneuroendocrinology 38(1):67–83PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wilson ME (2016) An introduction to the female Macaque model of social subordination stress. In: Social inequalities in health in nonhuman primates: the biology of the gradient, Springer. doi: 10.1007/978-3-319-30872-2_2 Google Scholar
  150. Zehr JL, Van Meter PE, Wallen K (2004) Factors regulating the timing of puberty onset in female rhesus monkeys (Macaca mulatta): Role of Prenatal Androgens, Social Rank, and Adolescent Body Weight. Biol Reprod 72:1087–1094PubMedCrossRefGoogle Scholar
  151. Zehr JL, Van Meter PE, Wallen K (2005) Factors regulating the timing of puberty onset in female rhesus monkeys (Macaca mulatta): role of prenatal androgens, social rank, and adolescent body weight. Biol Reprod 72(5):1087–1094PubMedCrossRefGoogle Scholar
  152. Zink CF, Tong Y, Chen Q, Bassett DS, Stein JL, Meyer-Lindenberg A (2008) Know your place: neural processing of social hierarchy in humans. Neuron 58(2):273–283PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jodi R. Godfrey
    • 1
    Email author
  • Melanie Pincus
    • 1
    • 2
  • Mar M. Sanchez
    • 1
    • 2
  1. 1.Yerkes National Primate Research CenterEmory UniversityAtlantaUSA
  2. 2.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA

Personalised recommendations