Skip to main content

Multi-modal Brain Tumor Segmentation Using Stacked Denoising Autoencoders

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9556)

Abstract

Accurate Segmentation of Gliomas from Magnetic Resonance Images (MRI) is required for treatment planning and monitoring disease progression. As manual segmentation is time consuming, an automated method can be useful, especially in large clinical studies. Since Gliomas have variable shape and texture, automated segmentation is a challenging task and a number of techniques based on machine learning algorithms have been proposed. In the recent past, deep learning methods have been tested on various image processing tasks and found to outperform state of the art techniques. In our work, we consider stacked denoising autoencoder (SDAE), a deep neural network that reconstructs its input. We trained a three layer SDAE where the input layer was a concatenation of fixed size 3D patches (11\(\,\times \,\)11\(\,\times \,\)3 voxels/neurons) from multiple MRI sequences. The 2nd, 3rd and 4th layers had 3000, 1000 and 500 neurons respectively. Two different networks were trained one with high grade glioma (HGG) data and other with a combination of high grade and low grade gliomas (LGG). Each network was trained with 35 patients for pre-training and 21 patients for fine tuning. The predictions from the two networks were combined based on maximum posterior probability. For HGG data, the whole tumor dice score was .81, tumor core was .68 and active tumor was .64 (\(n=220\) patients). For LGG data, the whole tumor dice score was .72, tumor core was .42 and active tumor was .29 (\(n=54\) patients).

Keywords

  • Gliomas
  • MRI
  • SDAE
  • Unsupervised learning
  • Supervised learning

K. Vaidhya et al.—All authors have contributed equally.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30858-6_16
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-30858-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Tustison, N., Gee, J.: Introducing Dice, Jaccard, and Other Label Overlap Measures To ITK (December 2009)

    Google Scholar 

  2. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: A CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference, SciPy 2010, Austin, TX, June 30 - July 3 (2010)

    Google Scholar 

  3. Davy, A., Havaei, M., Warde-Farley, D., Biard, A., Tran, L., Jon, P., Courville, A., Larochelle, H., Pal, C., Bengio, Y.: Brain tumor segmentation with deep neural networks. In: Proceedings of the MICCAI-BRATS (2014)

    Google Scholar 

  4. Durst, C., Tustison, N., Wintermark, M., Avants, B.: Ants and arboles (2013)

    Google Scholar 

  5. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  6. Gotz, M., Weber, C., Blocher, J., Stieltjes, B., Meinzer, H.P., Maier-Hein, K.: Extremely randomized trees based brain tumor segmentation. In: Proceedings of the BRATS Challenge-MICCAI (2014)

    Google Scholar 

  7. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A.C., Bengio, Y., Pal, C., Jon, P., Larochelle, H.: Brain tumor segmentation with deep neural networks. CoRR abs/1505.03540 (2015). http://arxiv.org/abs/1505.03540

  8. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning lecture 6e rmsprop : divide the gradient by a running average of its recent magnitude

    Google Scholar 

  9. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint (2012). arXiv:1207.0580

  10. Khotanlou, H., Colliot, O., Atif, J., Bloch, I.: 3d brain tumor segmentation in mri using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)

    MathSciNet  CrossRef  Google Scholar 

  11. Kleesiek, J., Biller, A., Urban, G., Köthe, U., Bendszus, M., Hamprecht, F.A.: ilastik for multi-modal brain tumor segmentation

    Google Scholar 

  12. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of alzheimer’s disease with deep learning. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 1015–1018, April 2014

    Google Scholar 

  13. Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: Appearance-and context-sensitive features for brain tumor segmentation

    Google Scholar 

  14. Menze, B., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    CrossRef  Google Scholar 

  15. Popuri, K., Cobzas, D., Murtha, A., Jägersand, M.: 3d variational brain tumor segmentation using dirichlet priors on a clustered feature set. Int. J. Comput. Assist. Radiol. Surg. 7(4), 493–506 (2012)

    CrossRef  Google Scholar 

  16. Sheet, D., Karri, S.P.K., Katouzian, A., Navab, N., Ray, A.K., Chatterjee, J.: Deep learning of tissue specific speckle representations in optical coherence tomography and deeper exploration for in situ histology, pp. 777–780 (2015)

    Google Scholar 

  17. Shin, H.C., Orton, M., Collins, D., Doran, S., Leach, M.: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1930–1943 (2013)

    CrossRef  Google Scholar 

  18. Stupp, R., Brada, M., van den Bent, M., Tonn, J.C., Pentheroudakis, G., Group, E.G.W., et al.: High-grade glioma: esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25(3), iii93–iii101 (2014)

    CrossRef  Google Scholar 

  19. Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, Winning Contribution, pp. 31–35 (2014)

    Google Scholar 

  20. Vaidya, S., Chunduru, A., Muthuganapathy, R., Krishnamurthi, G.: Longitudinal multiple sclerosis lesion segmentation using 3d convolutional neural networks

    Google Scholar 

  21. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual tracking. In: Advances in Neural Information Processing Systems, pp. 809–817 (2013)

    Google Scholar 

  23. Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS 2014, pp. 36–39 (2014)

    Google Scholar 

Download references

Acknowledgment

We would like to thank Dr.Sandipan B. and Dr. Sankara J. Subramanian for allowing us to use their computing resource in their respective labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapathy Krishnamurthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Vaidhya, K., Thirunavukkarasu, S., Alex, V., Krishnamurthi, G. (2016). Multi-modal Brain Tumor Segmentation Using Stacked Denoising Autoencoders. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2015. Lecture Notes in Computer Science(), vol 9556. Springer, Cham. https://doi.org/10.1007/978-3-319-30858-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30858-6_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30857-9

  • Online ISBN: 978-3-319-30858-6

  • eBook Packages: Computer ScienceComputer Science (R0)