Skip to main content

Dehydron-Rich Proteins in the Order-Disorder Twilight Zone

  • Chapter
  • First Online:
Physics at the Biomolecular Interface

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 781 Accesses

Abstract

As demonstrated in Chaps. 1 and 3, soluble proteins retain structural integrity by shielding their backbone hydrogen bonds from competing hydration of the paired polar moieties (amide and carbonyl). Thus, a dehydron constitutes a structural deficiency since it is prone to disruptive hydration. In this chapter we describe the physical and functional properties of dehydron-rich proteins with high dehydron density. We show that dehydron clusters represent structural singularities belonging to an order-disorder twilight zone that generates a sharp local quenching of the dielectric permittivity of the surrounding medium. The functional roles of these singularities are assessed for natural proteins. Special emphasis is placed on the molecular etiology of aberrant amyloidogenic aggregation arising in dehydron-rich soluble proteins with large deviations from the golden rule of molecular architecture established in Chap. 1. Our analysis of unstable aqueous interfaces requires a description of biological water that cannot be captured by conventional continuous models, where solvent degrees of freedom are averaged out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernández A, Sosnick TR, Colubri A. Dynamics of hydrogen-bond desolvation in folding proteins. J Mol Biol. 2002;321:659–75.

    Article  Google Scholar 

  2. Fernández A, Scheraga HA. Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proc Natl Acad Sci U S A. 2003;100:113–8.

    Article  ADS  Google Scholar 

  3. Fernández A, Scott LR. Adherence of packing defects in soluble proteins. Phys Rev Lett. 2003;91:018102.

    Article  ADS  Google Scholar 

  4. Fernández A, Lynch M. Nonadaptive origins of interactome complexity. Nature. 2011;474:502–5.

    Article  Google Scholar 

  5. Fernández A, Scott RL. Dehydron: a structurally encoded signal for protein interaction. Biophys J. 2003;85:1914–28.

    Article  Google Scholar 

  6. Fernández A. Keeping dry and crossing membranes. Nat Biotechnol. 2004;22:1081–4.

    Article  Google Scholar 

  7. Fernández A, Scott RL, Berry RS. Packing defects as selectivity switches for drug-based protein inhibitors. Proc Natl Acad Sci U S A. 2006;103:323–8.

    Article  ADS  Google Scholar 

  8. Fernández A, Kardos J, Scott R, Goto Y, Berry RS. Structural defects and the diagnosis of amyloidogenic propensity. Proc Natl Acad Sci U S A. 2003;100:6446–51.

    Article  ADS  Google Scholar 

  9. Fernández A, Berry RS. Proteins with hydrogen-bond packing defects are highly interactive with lipid bilayers: Implications for amyloidogenesis. Proc Natl Acad Sci U S A. 2003;100:2391–6.

    Article  ADS  Google Scholar 

  10. Deremble C, Lavery R. Macromolecular recognition. Curr Opin Struct Biol. 2005;15:171–5.

    Article  Google Scholar 

  11. Ma B, Elkayam T, Wolfson H, Nussinov R. Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci U S A. 2003;100:5772–7.

    Article  ADS  Google Scholar 

  12. Ma B, Pan Y, Gunasekaran K, Venkataraghavan RB, Levine AJ, Nussinov R. Comparison of the protein-protein interfaces in the p53-DNA crystal structures: towards elucidation of the biological interface. Proc Natl Acad Sci U S A. 2005;102:3988–93.

    Article  ADS  Google Scholar 

  13. Rajamani D, Thiel S, Vajda S, Camacho CJ. Anchor residues in protein-protein interactions. Proc Natl Acad Sci U S A. 2004;101:11287–92.

    Article  ADS  Google Scholar 

  14. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. Flexible nets: the roles of intrinsic disorder in protein interaction networks. FEBS J. 2005;272:5129–48.

    Article  Google Scholar 

  15. Iakoucheva LM, Dunker AK. Order, disorder, and flexibility: prediction from protein sequence. Structure (London). 2003;11:1316–7.

    Article  Google Scholar 

  16. Dunker AK, Obradovic Z. The protein trinity-linking function and disorder. Nat Biotechnol. 2001;19:805–6.

    Article  Google Scholar 

  17. Wade RC, Gabdoulline RR, Lüdemann SK, Lounnas V. Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations. Proc Natl Acad Sci U S A. 1998;95:5942–9.

    Article  ADS  Google Scholar 

  18. Ho WC, Fitzgerald MX, Marmorstein R. Structure of the p53 core domain dimer bound to DNA. J Biol Chem. 2006;281:20494–502.

    Article  Google Scholar 

  19. Pietrosemoli N, Crespo A, Fernández A. Dehydration propensity of order–disorder intermediate regions in soluble proteins. J Proteome Res. 2007;6:3519–26.

    Article  Google Scholar 

  20. Lindahl E, Hess B, Van der Spoel D. GROMACS 3.0: a package for molecular simulations and trajectory analysis. J Mol Model. 2001;7:302–17.

    Google Scholar 

  21. Fernández A. What caliber pore is like a pipe? Nanotubes as modulators of ionic gradients. J Chem Phys. 2003;119:5315–9.

    Article  ADS  Google Scholar 

  22. Ben-Naim A. Hydrophobic interactions. New York: Plenum Press; 1980.

    Book  Google Scholar 

  23. Debye P. Polar molecules. New York: Dover; 1929.

    MATH  Google Scholar 

  24. Mason PE, Neilson GW, Dempsey CE, Barnes AC, Cruickshank JM. The hydration structure of guanidinium and thiocyanate ions: implications for protein stability in aqueous solution. Proc Natl Acad Sci U S A. 2003;100:4557–61.

    Article  ADS  Google Scholar 

  25. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC. Atomic structure of the actin: DNase I complex. Nature. 1990;347:37–44.

    Article  ADS  Google Scholar 

  26. Meador WE, Means AR, Quiocho FA. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science. 1993;262:1718–21.

    Article  ADS  Google Scholar 

  27. Williams RS, Green R, Glover JN. Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1. Nat Struct Biol. 2001;8:838–42.

    Article  Google Scholar 

  28. Zahn R, Liu A, Luhrs T, et al. NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A. 2000;97:145–50.

    Article  ADS  Google Scholar 

  29. Schnuchel A, Wiltscheck R, Eichinger L, Schleicher M, Holak TA. Structure of severin domain 2 in solution. J Mol Biol. 1995;247:21–7.

    Article  Google Scholar 

  30. Glover JN, Harrison SC. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature. 1995;373:257–61.

    Article  ADS  Google Scholar 

  31. Lavigne P, Crump MP, Gagne SM, et al. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. J Mol Biol. 1998;281:165–81.

    Article  Google Scholar 

  32. Dobson CM. Protein misfolding, evolution and disease. Trends Biochem Sci. 1999;24:329–32.

    Article  Google Scholar 

  33. Dobson CM. The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B. 2001;356:133–45.

    Article  Google Scholar 

  34. Fändrich M, Dobson CM. The behavior of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J. 2002;21:5682–90.

    Article  Google Scholar 

  35. Sunde M, Blake CCF. From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q Rev Biophys. 1998;31:1–39.

    Article  Google Scholar 

  36. Dobson CM. Protein misfolding diseases: getting out of shape. Nature. 2002;418:729–30.

    Article  ADS  Google Scholar 

  37. Richardson JS, Richardson DC. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A. 2002;99:2754–9.

    Article  ADS  Google Scholar 

  38. Avbelj F, Baldwin RL. Role of backbone solvation and electrostatics in generating preferred peptide backbone conformations: distributions of phi. Proc Natl Acad Sci U S A. 2003;100:5742–7.

    Article  ADS  Google Scholar 

  39. Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998;95:13363–83.

    Article  ADS  Google Scholar 

  40. Nelson R, Sawaya M, Balbirnie M, et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature. 2005;435:773–8.

    Article  ADS  Google Scholar 

  41. Krishnan R, Lindquist SL. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature. 2005;435:765–72.

    Article  ADS  Google Scholar 

  42. Fang Y, Fang J. Discrimination of soluble and aggregation-prone proteins based on sequence information. Mol Biosyst. 2013;9:806–11.

    Article  Google Scholar 

  43. Moss RL, Fitzsimons DP, Ralphe JC. Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium. Circ Res. 2015;116:183–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, A. (2016). Dehydron-Rich Proteins in the Order-Disorder Twilight Zone. In: Physics at the Biomolecular Interface. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-30852-4_5

Download citation

Publish with us

Policies and ethics