Advertisement

Approach to Estimation of Performance Measures for SIP Server Model with Batch Arrivals

  • Yurii Orlov
  • Yuliya Gaidamaka
  • Elvira ZaripovaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 601)

Abstract

In this paper an approach to analysis of dependence of Session Initiation Protocol server model with batch arrivals performance measures on batch size distribution is considered. Proposed approach employs non-parametric methods of statistical analysis. It is shown that there is statistical reliable dependence of performance measures, taken for signaling traffic analysis, on distance between distributions in definite norm. On the basis of proposed analysis elasticity coefficients were evaluated depending on distance between batch size distributions. This approach enables to get correction factors for estimation of these parameters in case distribution functions differ from uniform.

Keywords

Optimization SIP mathematical model Distribution function Norm Performance measure Queuing system Parameter sensibility Sample Batch arrivals 

Notes

Acknowledgment

This work was supported in part by the Russian Foundation for Basic Research, projects No. 15-07-03051, 15-07-03608.

We thank Professor Konstantin Samouylov from Peoples’ Friendship University of Russia for comments that greatly improved the paper.

References

  1. 1.
    Rosenberg, J., et al.: IETF RFC 3261 SIP: Session Initiation Protocol (2002). http://www.ietf.org/rfc/rfc3261.txt
  2. 2.
    Rosenberg, J.: IETF RFC 5390 Requirements for Management of Overload in the Session Initiation Protocol (2008). https://tools.ietf.org/html/rfc5390
  3. 3.
    Hilt, V., Noel, E., Shen, C., Abdelal, A.: IETF RFC 6357 Design Considerations for Session Initiation Protocol (SIP) Overload, Control (2011). https://tools.ietf.org/html/rfc6357
  4. 4.
    Gurbani, V., Hilt, V., Schulzrinne, H.: IETF RFC 7339 Session Initiation Protocol (SIP) Overload Control (LBOC) (2014). https://tools.ietf.org/html/rfc7339
  5. 5.
    Noel, E., Williams, P.M.: IETF RFC 7415 Session Initiation Protocol (SIP) Rate Control (RBOC) (2015). https://tools.ietf.org/html/rfc7415
  6. 6.
    Samouylov, K.E., Sopin, E.S.: On analysis of M[X]\(|\)G\(|\)1\(|\)r queuing system. Bulletin of Peoples’ Friendship University of Russia. Series Mathematics, Information Sciences, Physics, no. 1, pp. 91–97 (2011)Google Scholar
  7. 7.
    Gaidamaka, Y., Pechinkin, A., Razumchik, R., Samouylov, K., Sopin, E.: Analysis of M\(|\)G\(|\)1\(|\)R queue with batch arrivals and two hysteretic overload control policies. Int. J. Appl. Math. Comput. Sci. 24(3), 519–534 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gaidamaka, Y.V., Zaripova, E.R., Orlov, Y.N.: Analysis of the impact the batch size distribution on parameters of the SIP-server queueing model with batch arrivals. KIAM Preprint no. 27, pp. 1–16, Moscow (2015). http://library.keldysh.ru/preprint.asp?id=2015-27
  9. 9.
    Gaidamaka, Y., Zaripova, E.: Comparison of polling disciplines when analyzing waiting time for signaling message processing at SIP-server. In: Dudin, A., et al. (eds.) ITMM 2015. CCIS, vol. 564, pp. 358–372. Springer International Publishing, Switzerland (2015)CrossRefGoogle Scholar
  10. 10.
    Gaidamaka, Y.V.: Model with threshold control for analyzing a server with an SIP protocol in the overload mode. Autom. Control Comput. Sci. 47(4), 211–218 (2013)CrossRefGoogle Scholar
  11. 11.
    Abaev, P., Gaidamaka, Y., Samouylov, K.E.: Modeling of hysteretic signaling load control in next generation networks. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2012. LNCS, vol. 7469, pp. 440–452. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Abaev, P., Gaidamaka, Y., Samouylov, K.E.: Queuing model for loss-based overload control in a SIP server using a hysteretic technique. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2012. LNCS, vol. 7469, pp. 371–378. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Gaidamaka, Y., Pechinkin, A., Razumchik, R., Samouylov, K., Sopin, E.: Analysis of M\(|\)G\(|\)1\(|\)R queue with batch arrivals and two hysteretic overload control policies. Int. J. Appl. Math. Comput. Sci. 24(3), 519–534 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Abaev, P., Gaidamaka, Y., Pechinkin, A., Razumchik, R., Samouylov, K., Shorgin, S.: Hysteretic control technique for overload problem solution in network of SIP servers. Comput. Inform. 33(1), 218–236 (2014)Google Scholar
  15. 15.
    Shorgin, S., Samouylov, K., Gaidamaka, Y., Etezov, S.: Polling system with threshold control for modeling of SIP server under overload. In: Advances in Intelligent Systems and Computing, vol. 240, pp. 97–107 (2014)Google Scholar
  16. 16.
    Abhayawardhana, V.S., Babbage, R.: A traffic model for the IP multimedia subsystem (IMS). In: Proceedings of 65th Vehicular Technology Conference, pp. 783–787 (2007)Google Scholar
  17. 17.
    Vishnevsky, V., Kozyrev, D., Semenova, O.: Redundant queuing system with unreliable servers. In: 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 283–286 (2014)Google Scholar
  18. 18.
    Abaev, P.O., Gaidamaka, Y.V., Pechinkin, A.V., Razumchik, R.V., Shorgin, S.Y.: Simulation of overload control in SIP server networks. In: Proceedings of the 26th European Conference on Modelling and Simulation, ECMS 2012, Koblenz, Germany, pp. 533–539 (2012)Google Scholar
  19. 19.
    Abaev, P.O., Pechinkin, A.V., Razumchik, R.V.: On analytical model for optimal SIP server hop-by-hop overload control. In: Proceedings of the 4th International Congress on Ultra Modern Telecommunications and Control Systems (IEEE ICUMT-2012), Saint-Petersburg, Russia, pp. 299–304 (2012)Google Scholar
  20. 20.
    Abaev, P., Gaidamaka, Y., Samouylov, K., Shorgin, S.: Design and software architecture of SIP server for overload control simulation. In: Proceedings of the 27th European Conference on Modelling and Simulation (ECMS 2013), 27–30 May, Aalesund, Norway, pp. 580–586 (2013)Google Scholar
  21. 21.
    Samouylov, K., Abaev, P., Gaidamaka, Y., Pechinkin, A., Razumchik, R.: Analytical modelling and simulation for performance evaluation of SIP server with histeretic overload control. In: Proceedings of the 28th European Conference on Modelling and Simulation (ECMS 2014), 27–30 May, Brescia, Italy, pp. 603–609 (2014)Google Scholar
  22. 22.
    Gaidamaka, Y., Pechinkin, A., Razumchik, R.: Time-related stationary characteristics in queueing system with constant service time under hysteretic policy. In: Proceedings of the 6th International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT 2014), Russia, pp. 634–640 (2014)Google Scholar
  23. 23.
    Samouylov, K., Gaidamaka, Y., Talanova, M., Pavlotsky, O.: Simulation of SIP-server with hysteretic input and loss-based overload control scheme. In: Proceedings of the 6th International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT 2014), St. Petersburg, Russia, pp. 589–594 (2014)Google Scholar
  24. 24.
    Samouylov, K., Gaidamaka, Y., Abaev, P., Talanova, M., Pavlotsky, O.: Analytical modeling of rate-based overload control with token bucket traffic shaping on client side. In: Proceedings of the 29th European Conference on Modelling and Simulation (ECMS 2015). Digitaldruck Pirrot GmbH, Albena, pp. 669–674 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Yurii Orlov
    • 1
  • Yuliya Gaidamaka
    • 2
  • Elvira Zaripova
    • 2
    Email author
  1. 1.Keldysh Institute of Applied Mathematics Russian Academy of SciencesMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations