Skip to main content

Properties of Neutral Atmosphere

  • Chapter
  • First Online:
Book cover Microphysics of Atmospheric Phenomena

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 934 Accesses

Abstract

Some atmospheric parameters as a function of altitude are represented for the atmospheric standard model that operates with averaging over time and season parameters at the latitude of \(45^\circ N\). As a result of air circulation due to air convective motion, molecules and small aerosols are captured by vortices, and their concentration in air does not vary with altitude, whereas micron-size aerosols do not penetrate altitudes above those of their formation. Therefore concentration of water molecules in the stratosphere is small compared to that in the troposphere. The water and carbon balances in the atmosphere are analyzed, and accumulation of \(CO_2\) in the atmosphere is considered from various standpoints. The atmospheric energetic balance of the Earth and its atmosphere is represented and is compared with energetics of other processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Standard Atmosphere (U.S. Government Printing Office, Washington, 1976)

    Google Scholar 

  2. K.S.W.Champion, A.E.Cole, A.J.Kantor, in Chemical dynamics in extreme environments., ed. by R.A. Dressler (World Scientific Publishing, Singapore, 2001)

    Google Scholar 

  3. M. Davies, The Standard Handbook for Aeronautical and Astronautical Engineers (McGraw-Hill, New York, 2003)

    Google Scholar 

  4. Handbook of Chemistry and Physics, ed. by 86, D.R. Lide (CRC Press, London, 2003–2004)

    Google Scholar 

  5. http://en.wikipedia.org/wiki/Thunderstorm

  6. L.F. Richardson, Weather Prediction by Numerical Processes (Cambridge University Press, Cambridge, 1922)

    MATH  Google Scholar 

  7. E. Lorenz, The Nature and Theory of General Circulation of the Atmosphere (World Metheorological Organization, Geneva, 1967)

    Google Scholar 

  8. D.G. Andrews, J.R.Holton, C.B.Leovy, Middle Atmospheric Dynamics. (Academic Press, 1987)

    Google Scholar 

  9. D.G. Andrews, An Introduction to Atmospheric Physics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  10. G.T. Csanady, Turbuletnt Diffusion in Environment (Holland, Reidel, Dordrecht, 1973)

    Book  Google Scholar 

  11. D.J. Tritton, Physical Fluid Dynamics (Claredon Press, Oxford, 1988)

    MATH  Google Scholar 

  12. L.T.Matveev, Fundamentals of General Metheorology: Physics of the Atmosphere. (Israel Programme for Scientific Translations, Jerusalem, 1967)

    Google Scholar 

  13. J.P. Peixoto, A.H. Oort, The Physics of Climate (The American Institute of Physics, New York, 1992)

    Google Scholar 

  14. B.F.J. Schonland, Atmospheric Electricity (Methuen, London, 1932)

    MATH  Google Scholar 

  15. J.A. Chalmers, Atmospheric Electricity (Claredon Press, Oxford, 1949)

    Google Scholar 

  16. B.F.J. Schonland, Atmospheric Electricity (Methuen, London, 1953)

    MATH  Google Scholar 

  17. H. Israel, Atmospheric Electricity (Keter Press Binding, Jerusalem, 1973)

    Google Scholar 

  18. R. Reiter, Phenomena in Atmospheric and Environmental Electricity (Elsevier, New York, 1992)

    Google Scholar 

  19. E.P. Krider, R.G. Roble, The Earth’s Electrical Environment (National Academy Press, Washington, 1986)

    Google Scholar 

  20. D.R. MacGorman, W.D. Rust, The Electrical Nature of Storms (Oxford University Press, Oxford, 1998)

    Google Scholar 

  21. L.D. Landau, E.M. Lifshits, Fluid Mechanics (Pergamon Press, London, 1959)

    MATH  Google Scholar 

  22. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)

    MATH  Google Scholar 

  23. P. Drazin, W. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, 1981)

    MATH  Google Scholar 

  24. D.J. Acheson, Elementary Fluid Dynamics (Oxford University Press, Oxford, 1990)

    MATH  Google Scholar 

  25. V.P. Krainov, Qualitative Methods in Physical Kinetics and Hydrodynamics (American Institute of Physics, New York, 1992)

    Google Scholar 

  26. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1961)

    MATH  Google Scholar 

  27. E.L. Koschmieder, Benard Cells and Taylor Vortices (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  28. A.V. Getting, Rayleigh-Taylor Convection Structure and Dynamics (World Scientific Publishing, London, 1998)

    Book  Google Scholar 

  29. G.Z. Gershuni, E.M. Zhukhovitskii, Convection Stability of Compressed Liquids (Nauka, Moscow, 1972)

    Google Scholar 

  30. T. Shimazaki, A.R. Laird, Radio Sci. 7, 23 (1972)

    Article  ADS  Google Scholar 

  31. M.J. McEwan, L.N. Phillips, Chemistry of the Atmosphere (Edward Arnold, London, 1975)

    Google Scholar 

  32. D.F. Strobel, Radio Sci. 7, 1 (1972)

    Article  ADS  Google Scholar 

  33. A. Einstein, Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  34. A. Einstein, Ann. Phys. 19, 371 (1906)

    Article  Google Scholar 

  35. A. Einstein, Zs.für. Electrochem. 14, 235 (1908)

    Article  Google Scholar 

  36. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  37. J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases (North Holland, Amsterdam, 1972)

    Google Scholar 

  38. M.Capitelli, D.Bruno, A.Laricchiuta. Fundamental Aspects of Plasma Chemical Physics. Transport. (Springer, New York, 2013)

    Google Scholar 

  39. B.M. Smirnov, Reference Data on Atomic Physics and Atomic Processes (Springer, Heidelberg, 2008)

    Google Scholar 

  40. R. Braham, J. Meteorol. 9, 227 (1952)

    Article  Google Scholar 

  41. C.T.R. Wilson, J. Franklin Inst. 208, 1 (1929)

    Article  Google Scholar 

  42. A. Baumgartner, E. Reichel, The World Water Balance (Elsevier, Amsterdam, 1975)

    Google Scholar 

  43. K.E. Trenberth, L. Smith, T. Qian et al., J. Hydrometeorol. 8, 758 (2007)

    Article  ADS  Google Scholar 

  44. I.A.Shiklomanov, In Water in Crisis : A Guide to the World’s Fresh Water Resources. ed. by P.H.Gleick (Oxford Univ.Press, Oxford, 1993), pp. 13–24

    Google Scholar 

  45. I.A. Shiklomanov, J.C. Rodda (eds.), World Water Resources at the Beginning of the Twenty-First Century (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  46. R.W. Healy, T.C. Winter, J.W. Labaugh, O.L. Franke, Water budgets: Foundations for effective water-resources and environmental management. (Reston, Virginia, U.S.Geological Survey Circular 1308, 2007)

    Google Scholar 

  47. http://en.wikipedia.org/wiki/Atmosphere-of-Earth

  48. http://water.usgs.gov/edu/watercyrcleatmosphere.html

  49. http://en.wikipedia.org/wiki/water-circle

  50. http://en.wikipedia.org/wiki/Properties-of-water

  51. R.P. Feynman, R.B.Leighton, M.Sands, The Feynman Lectures of Physics., vol. 2(Addison-Wesley, Reading, 1964)

    Google Scholar 

  52. B.M. Smirnov, Cluster Processes in Gases and Plasmas (Wiley, Berlin, 2010)

    Book  Google Scholar 

  53. B.M. Smirnov, Phys. Uspekhi 184, 1153 (2014)

    Google Scholar 

  54. http://en.wikipedia.org/wiki/Troposphere

  55. C.B. Moore, B. Vonnegut. Point-discharge Currents. in Lightning, ed. by R.H. Golde (Acadamic Press, London, 1977), p. 51

    Google Scholar 

  56. B.J. Mason, The Physics of Clouds (Claredon Press, Oxford, 1971)

    Google Scholar 

  57. J. Warner, Tellus 7, 450 (1955)

    Article  ADS  Google Scholar 

  58. W.R. Leaitch, G.A. Isaak, Atmos. Environ. 25, 601 (1991)

    Article  ADS  Google Scholar 

  59. http://en.wikipedia.org/wiki/Liquid-water-content

  60. E.P. Wigner, W.F. Seits, Phys. Rev. 46, 509 (1934)

    Article  ADS  Google Scholar 

  61. E.P. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  ADS  Google Scholar 

  62. B.M. Smirnov, Clusters and Small Particles in Gases and Plasmas (Springer, New York, 1999)

    Google Scholar 

  63. B.M. Smirnov, Nanoclusters and Microparticles in Gases and Vapors (De Gruyter, Berlin, 2012)

    Book  MATH  Google Scholar 

  64. B.C. Kindel, P. Pilewskie1, K.S.Schmidt, Atmos. Meas. Tech. 8, 1147 (2015)

    Article  Google Scholar 

  65. T. Pedersen, Y. Rosental, S. Seitzinger et al., Science 290, 291 (2000)

    Article  ADS  Google Scholar 

  66. D.S. Schimmel, The Carbon Cycle. ed. by T.M. Wigley (Cambridge, Cambridge University Press, 2000)

    Google Scholar 

  67. https://en.wikipedia.org/wiki/Carbon-cycle

  68. R. Hill, Nature 139, 881 (1937)

    Article  ADS  Google Scholar 

  69. H.G. Jones, Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  70. D.O. Hall, K.K. Rao, Photosynthesis (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  71. D.W. Lawlor, Photosynthesis (BIOS, Oxford, 2001)

    Google Scholar 

  72. J.E. Bidlack, K.R. Stern, S. Jansky, Introductory Plant Biology (McGraw-Hill, New York, 2003)

    Google Scholar 

  73. Handbook of Photosynthesis (CRC Press, Boca Ratonm, 2005)

    Google Scholar 

  74. R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley, London, 2014)

    Google Scholar 

  75. G.E. Edwards, D.A. Walker, C3, C4: Mechanisms and Cellular and Environmental Regulation of Photosynthesis (Blackwell, Oxford, 1983)

    Google Scholar 

  76. http://www.ciesin.org/docs/004-038/004-038a.html

  77. https://www.wikipedia.org/wiki/Greenhouse-effect

  78. J. Lean, P.R. Rowntree, J. Climate 10, 1216 (1997)

    Article  ADS  Google Scholar 

  79. A.N. Hahmann, R.E. Dickinson, J. Climate 10, 1944 (1997)

    Article  ADS  Google Scholar 

  80. D. Lawrence, K. Vandecar, Nature Climate Change 5, 27 (2015)

    Article  ADS  Google Scholar 

  81. https://www.ipcc.ch.publications-and-data/ar4/wg1/en/ch757-3.html

  82. http://www.esrl.noaa.gov/gmd/ccgg/trends

  83. https://en.wikipedia.org/wiki/Mauna-Loa-Observatory

  84. D. Lüthi, M. Floch, B. Bereiter e.a. Nature 453, 379 (2008)

    Article  ADS  Google Scholar 

  85. http://climate.nasa.gov

  86. J.B.J. Fourier, Annal. Chem. Phys. 27, 136 (1824)

    Google Scholar 

  87. J.B.J. Fourier, Mem. Acad. Roy. Sci. 7, 569 (1827)

    Google Scholar 

  88. B.M. Smirnov, Energetics of the Atmosphere. (Znanie, Physical series, Moscow, 1979, N3; in Russian)

    Google Scholar 

  89. H.N. Pollack, S.J. Hunter, R. Johnson, Rev. Geophys. 30, 267 (1997)

    Google Scholar 

  90. M.L. Salby, Physics of the Atmosphere and Climate (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  91. http://en.wikipedia.org/wiki/Earth's-energy-budget

  92. https://en.wikipedia.org/wiki/Greenhouse-effect

  93. http://en.wikipedia.org/wiki/solar-constant

  94. P.V. Foukal, J. Lean, Science 247, 556 (1990)

    Article  ADS  Google Scholar 

  95. R.C. Wilson, H.S. Hudson, Nature 351, 42 (1991)

    Article  ADS  Google Scholar 

  96. C. Fröhlich, Space Sci. Rev. 125, 53 (2006)

    Article  ADS  Google Scholar 

  97. S. Mekaoui, S. Dewitte, Solar Phys. 247, 203 (2008)

    Article  ADS  Google Scholar 

  98. C. Fröhlich, J. Lean. Geophys. Res. Lett. 25, 4377 (1998)

    Article  Google Scholar 

  99. C. Fröhlich, J. Lean. Astron. Astrophys. Rev. 12, 273 (2004)

    Article  ADS  Google Scholar 

  100. G. Kopp, J.L. Lean, Geophys. Res. Lett. 38, L01706 (2011)

    Article  ADS  Google Scholar 

  101. R.C. Wilson, Solar Phys. 74, 217 (1981)

    Article  ADS  Google Scholar 

  102. N.B. Vargaftik, Tables of Thermophysical Properties of Liquids and Gases, 2nd edn. (Halsted Press, New York, 1975)

    Google Scholar 

  103. M.A. Ruderman, J.W. Chamberlain, Planet Space Sci. 23, 247 (1975)

    Article  ADS  Google Scholar 

  104. B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics (Pearson, London, 2013)

    Google Scholar 

  105. B.V. Somov, Cosmic Plasma Physics (Kluwer, Dordrecht, 2000)

    Book  Google Scholar 

  106. N. Meyer-Vernet, Basic of Solar Wind (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  107. K. Berger, The Earth flash. In Lightning, ed. by R.H. Golde (London, Academic Press, 1977), p. 119

    Google Scholar 

  108. M. Rycroft et al., Space Sci. Rev. 137, 83 (2008)

    Article  ADS  Google Scholar 

  109. M.J. Rycroft et al., in Planetary Atmospheric Electricity, ed. by F. Leblanc, et al. (Springer, Heidelberg, 2008), p. 83

    Chapter  Google Scholar 

  110. E. Williams, Atmos. Res. 91, 140 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris M. Smirnov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smirnov, B.M. (2017). Properties of Neutral Atmosphere. In: Microphysics of Atmospheric Phenomena. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-30813-5_2

Download citation

Publish with us

Policies and ethics